
Strategic Complementarities in a Dynamic Model of Technology

Adoption: P2P Digital Payments∗

Fernando Alvarez

University of Chicago

David Argente

Yale University

Francesco Lippi

LUISS and EIEF

Esteban Méndez

Central Bank of Costa Rica

Diana Van Patten

Yale University

December 2025

Abstract

We develop a dynamic model of technology adoption featuring strategic complemen-
tarities: the benefits of the technology increase with the number of adopters. We
show that complementarities give rise to gradual adoption, multiple equilibria, multi-
ple steady states, and suboptimal allocations. We study the planner’s problem and
its implementation through adoption subsidies. We apply the theory to SINPE Móvil,
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1 Introduction

We study the di!usion of a new technology in an economy characterized by strategic comple-

mentarities. These complementarities occur because the benefits that agents derive from the

technology increase with the number of users –a phenomenon long recognized in the applied

literature on technology di!usion (see Griliches (1957); Mansfield (1961)). Progress in this

research area is hindered by the challenges that arise when modeling adoption dynamically

–a large state space, non-linear decisions, multiple equilibria–, and by the lack of detailed

data on technology di!usion. We develop a new tractable model of technology adoption and

apply it to the di!usion of a new payment app, SINPE Móvil, a digital application created

by the Central Bank of Costa Rica that allows instantaneous P2P transfers between bank

account holders in the network.1 By its nature, the usefulness on this app depends on others

joining the network. We aim to quantify the value of this complementarity using granular

data from SINPE and other sources. We use the model to discuss equilibrium existence,

multiplicity of equilibrium paths, multiplicity of stationary equilibria, and the local stability

of stationary equilibria (see e.g., Matsuyama (1991)). We characterize the planner’s prob-

lem and its implementation through subsidies, and use a calibrated version of the model to

analyze the optimal policy.

The model assumes that the benefits of the technology at time t depend on the number

of agents who have adopted it, N(t), and on an idiosyncratic persistent random component,

x(t). In particular, we assume that the flow benefit of the app is proportional to the product

between these variables, x(t)N(t), so that an agent is more likely to adopt if her private

needs for it are high (a high x) and/or when more agents use the app (higher N). A

single parameter, controlling the intensity of this interaction e!ect, measures the strength of

the strategic complementarities. A high value of x also implies that an agent will use the

technology more intensively, a feature that we leverage when calibrating the model to the

data where we observe both adoption as well as the intensity of usage. Adoption entails a

fixed (once and for all) cost and agents choose when to adopt taking the aggregate path of

adoption as given. We show that when the idiosyncratic benefits are random the equilibrium

features gradual adoption through a simple mechanism: agents wait for others to adopt.

The optimal adoption rule is given by a time-dependent threshold value, denoted by x̄(t),

such that adoption is optimal if x(t) > x̄(t). We assume that the economy starts with

an (arbitrary) measure of agents endowed with the technology, which serves as the initial

1Although the app is called “SINPE Móvil,” throughout we will be referring to it only as “SINPE,”
which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish). The app was
launched in May 2015 and over 60% of the adult population used it in 2021, with about 10% of the country’s
GDP transacted via SINPE. See Björkegren (2018) for a related network-goods analysis using data on mobile
phones adoption in Rwanda.
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condition of the equilibrium. Aggregation of the adoption decisions across agents yields a

path for the fraction of agents that use the technology at each time t, N(t). Given the initial

and terminal conditions, the equilibrium has a classic fixed point structure: the optimal

decision path (x̄) depends on the aggregate path (N), and vice-versa.

The model yields three main results, each summarized by a theorem. We show that the

optimal adoption rule for each agent, summarized by the threshold path x̄, is a decreasing

functional of the path of adoption N . The strength of this e!ect depends on the parameter

that controls the strategic complementarity. Likewise, we show that the adoption path N is a

decreasing functional of the path x̄, for any initial distribution of adopters. An equilibrium is

a fixed point given by the composition of these two functionals. The first theorem establishes

the existence, and possibly the multiplicity, of dynamic equilibria. These equilibria form

a non empty lattice, i.e., they are ordered so that there is a “largest one,” N
H , and a

“smallest” one, NL. The adoption path of the largest equilibrium is above the smallest one

at every point in time, NH(t) → N
L(t), for all t. More equilibria may exist and are bracketed

between these ones (the paths of di!erent equilibria do not cross). We establish these results

using the monotone comparative statics logic by Milgrom and Shannon (1994), and Tarski’s

fixed point theorem. We show that there is a critical mass of adopters N0 such that, if the

initial measure of adopters is below N0, there exists an equilibrium where no one will adopt

eventually. We also study stationary equilibria, i.e., equilibria where N is constant through

time, and show that, besides the stationary equilibrium with no adoption, the model may

feature two additional interior stationary equilibria, with low- and high-adoption.

We find two types of multiple dynamic equilibria for a fixed initial condition. A first

kind, which we denote as “delayed adoption”, is a family of equilibria where the path of the

endogenous variables is time-shifted. These equilibria di!er in the length of the initial period

with no adoption. The second kind is one where the equilibrium either converges to the high

adoption or to the no adoption. We discuss the initial conditions and parameter conditions

under which each case occurs.

The second theorem characterizes the stability of the stationary equilibria by means

of a perturbation analysis with respect to the initial condition, assumed to be one of the

two interior equilibria. The analysis is non-trivial because it involves the linearization of

an infinite dimensional system: the distribution of adopters. We handle the problem by

leveraging techniques from the Mean Field Game (MFG) literature (e.g., Alvarez et al.,

2023a; Auclert et al., 2022; Bilal, 2023), which determines the local stability by inspecting

the eigenvalues of a linear operator. One novelty compared to the MFG problem studied

in Alvarez et al. (2023a) is the possibility of multiple stationary equilibria. The stability

condition then depends on the particular equilibrium that is chosen. We find that the high-
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adoption equilibrium is locally stable, while the low-adoption is unstable, a feature that leads

us to discard it from the analysis.

Equilibria are socially ine”cient because agents do not internalize the fact that when they

adopt they benefit all agents who already have the technology. We show how to characterize

e”cient allocations by solving a planner’s problem which takes into account the dynamics

across the entire network. The third theorem shows how to decentralize the planner’s solution

using a simple tool: a time-varying subsidy paid to those that use the technology.

We then leverage comprehensive data collected since SINPE was created to analyze the

dynamics of adoption and usage, to document the presence of strategic complementarities,

and to discipline the parametrization of the model. Our baseline analysis links data on

users—both receivers and senders—within their employer-employee network.2 We identify

the presence of strategic complementarities using arguably exogenous variation in the network

size due to mass layo!s. We document a causal relation between the share of agents who

have adopted (N) and usage of the app, both at the extensive margin as well as at the

intensive margin: a sudden decrease of the network size lowers the probability of adoption

and lowers the intensity of use.3 This e!ect persists across a battery of ways to define usage

and networks. It also emerges after using a leave-one-out instrument and following a balanced

panel of adopters to address concerns regarding selection.

We match the theory with the data in a quantitative analysis where we calibrate the

model using key moments from the data with the objective to compute the optimal adoption

subsidy. To capture the initial gradual di!usion of the technology, observed in each network,

we supplement the model with a layer of slow-information di!usion following the seminal

work of Bass (1969). The strength of the strategic complementarities is chosen using the

information retrieved from the mass layo!s described above. The calibrated model shows that

the optimal subsidy speeds up adoption by the agents and ultimately pushes the economy

towards universal adoption of the payment app.

Related Literature. Several recent studies are related to our paper. Benhabib et al.

(2021) model firms that can endogenously innovate and adopt a technology. They analyze

the e!ect of these choices on productivity and balanced growth, but without conducting an

analysis of the transition between stationary distributions; likewise, Buera et al. (2021) study

2Individual-to-individual transactions account for over 95% of all transactions, regardless of the time
period considered. We find that 44% of all SINPE transactions occur between coworkers. Family networks
and spatial “neighborhood” networks are also considered for robustness.

3Namely, we focus on networks of coworkers and examine the e!ect of network changes on the intensity
of the app’s usage and its adoption for workers displaced by a mass layo!. By analyzing the usage intensity
of workers who had already adopted the app prior to being displaced, we are able to isolate the influence of
strategic complementarities rather than the e!ects of learning.
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policies that can coordinate technology adoption across firms. A closely related contribution

is Crouzet et al. (2023), who develop a model with a unique equilibrium where the rate of

adoption of electronic payment by retailers increases following an aggregate shock. Their

analysis is motivated by 2016 Indian Demonetization, and exploits the variation in the inten-

sity with which firms in Indian districts were exposed to the shock to examine the adoption

of retailers. Unlike our model, which has heterogeneous agents and generates dynamics and

gradual adoption endogenously (as agents wait for others to adopt before doing so), their

model features homogeneous agents and a sluggish adjustment à la Calvo (1983), generating

gradual adoption through this imposed friction. Moreover, the heterogeneity in our model

allows us to accommodate, not only aggregate shocks when we analyze transition dynamics

in closed-form, but also dynamics after shocks that target particular types of agents; for

instance, we compare the propagation after “giving the app” to people with high vs. low

idiosyncratic benefits, which in turn can be mapped to observables like wages and skills.

The paper also deals with technical issues of multiplicity and stability that have plagued

the economic geography and trade literatures. Recent papers have developed algorithms that

exploit the super- or sub-modularity of the objective function based on Tarski’s theorem

(Jia, 2008; Arkolakis et al., 2023; Alfaro-Urena et al., 2023). Our approach also leverages the

monotonicity of our problem, but does so for an analysis of dynamic stability as a criterion

to select an equilibrium and develops the planning problem to study e”ciency.

The paper is organized as follows. The next section presents the model, Section 3 discusses

di!erent types of equilibria that may arise. Section 4 uses a perturbation method to inspect

the stability of the stationary equilibria. Section 5 discusses the planning problem. Section 6

adds an information di!usion mechanism to the baseline model. Section 7 presents the data

and documents the non-negligible role of strategic complementarities in the adoption and

use of SINPE. A calibrated version of the model is used in Section 8 to discuss the optimal

subsidy for the e”cient adoption of SINPE.

2 The Model

This section presents a tractable model of technology adoption within a “network” of agents.

The model fits alternative notions of network, later discussed in the empirical analysis, such

as a group of co-workers, households living in the same neighborhood, or a (broad) notion

of family members. The network is populated by a continuum of agents who di!er in the

potential benefits from adopting the technology. Let N(t) ↑ [0, 1] be the fraction of agents

who have adopted at time t ↑ [0, T ]. The flow benefit at time t for an agent who has already
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adopted the technology is

x(ω0 + ωnN(t)) (1)

where ω0, ωn > 0 are parameters, x is a stochastic process, independent across agents, with

variance ε
2 per unit of time, no drift, and reflecting barriers at x = 0 and x = U , so that

dx = εdW whereW is a standardized Brownian motion. Later we provide a derivation of this

equation, as the indirect utility benefit arising from the optimal intensity of technology use

in each period, see equation (29). We let c > 0 be the fixed cost of adopting the technology

and r > 0 be the time discount rate. With probability ϑ per unit of time agents die, so that

agents discount time at rate ϖ ↓ r + ϑ. Dead agents are replaced by newborns without the

technology and an x drawn from the invariant density f(x) = 1/U for x ↑ [0, U ], where f is

uniform because of the reflecting barriers.

2.1 Individual Decisions, Aggregation, Equilibrium

We next describe the agent’s optimal decision as a function of the whole path of aggregate

adoption N : [0, T ] ↔ [0, 1], discuss how to aggregate individual decision to compute the

aggregate path of adoption, and define the equilibrium.

Let a(x, t) be the value function of an agent who has adopted the technology and has

state x at time t:

a(x, t) = E
[ ∫ T

t

e
→ω(s→t) (ω0 + ωnN(s)) x(s)ds+ e

→ω(T→t)
aT (x)

∣∣∣ x(t) = x

]
(2)

for all t → 0 and x ↑ [0, U ]. The agent takes the whole path N as given. For finite T we

assume that aT (x) = (ω0 + ωnn̄)E
[ ∫↑

T
e
→ω(s→T )

x(s)ds
∣∣∣ x(T ) = x

]
, where n̄ ↑ [0, 1]. The

interpretation of aT is the value of adopting when the fraction of adopters is a given constant

n̄.

An agent with state x, who has not yet adopted at time t, has a value function v(x, t)

that solves the stopping-time problem

v(x, t) = max
t↓ε

E
[
e
→ω(ε→t) (a (x (ϱ) , ϱ)↗ c)

∣∣∣ x(t) = x

]
, (3)

where ϱ denotes the time of the adoption and depends only on the information generated by

the process for x and on calendar time t (the latter because of the dynamics of N(t)).

We will use the convention that for T = ↘ then the set [0,↘] over which the functions

of interest are defined shall be interpreted as [0,↘).
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Discretized Model. We consider a discretized version of the model where time is discrete,

at intervals of length #t, and the state x is discrete in intervals of length #x. The reflecting

Brownian Motion, Poisson processes, and discounting are changed accordingly, following the

scheme used in finite di!erence approximations, see Definition 3 in Appendix B for a detailed

definition. For small #t, #x, the discretized model converges to the decision problem in

continuous time. The advantage of the discretized model is that we can compute numerical

solutions for the equilibrium path for the case of T finite. Instead, the advantage of the

continuous time model is that it is easier to characterize stationary solutions as well as

perturbations.

Next we state a preliminary result to establish that we can represent the optimal adoption

rule at time t as a threshold rule, x̄(t).

Lemma 1. Fix a path N and a time t ↑ [0, T ]. If it is optimal to adopt at (x1, t), then it is

also optimal to adopt at (x2, t) where x2 > x1. This holds for the continuous time as well as

for the discretized model.

For finite T define

DT (x) ↓ aT (x)↗ v(x, T )

further discussed in Section 2.2. The function X denotes the path for the optimal threshold

as: x̄ = X (N ;DT ), so that x̄ : [0, T ] ↔ [0, U ]. It is immediate from equation (2) and

equation (3) that what matters for the optimal adoption decision is DT (x), which is the

reason why we include DT as an argument of X .

Aggregation. Given the individual decision rule we can compute the implied path for

the fraction of adopters, N . We start by defining the probability that an agent at s with

state x(s) = x survives until time t, while the value of her state remains below x̄ during this

period:

P (x, s, t; x̄) = Pr

[
x(ς) ≃ x̄(ς), for all ς ↑ [s, t]

∣∣∣ x(s) = x

]
e
→ϑ(t→s)

. (4)

For an agent who at time s has x ≃ x̄(s), the value of P (x, s, t; x̄) gives the probability that

the agent will survive up to t without adopting. Letm0(x) be the density of the agents at time

t = 0 without the technology. Given the assumption about x, we require 0 ≃ m0(x) ≃ 1/U

for all x ↑ [0, U ]. The fraction of agents who have adopted the technology at time t is

N(t) = 1↗

∫
U

0

P (x, 0, t; x̄)m0(x)dx↗

∫
t

0

ϑ

[∫
U

0

P (x, s, t; x̄)
1

U
dx

]
ds. (5)
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The second term on the right hand side is the fraction of agents who did not have the

technology at time 0 and survived until time t without adopting. The third term considers

the cohorts of agents that are born between 0 and t, and for each of these cohorts computes

the fraction that survived without adopting up to t. We note that an equivalent version of

equation (5) holds in the discretized version of the model, which for a given x̄ is simply a

matrix manipulation. We let N (x̄;m0) be the path of N as a function of x̄ (the path of the

adoption threshold) and of the initial condition m0.

Equilibrium. The equilibrium is given by the fixed point between the forward looking

optimal adoption decision, encoded in X , and the backward looking aggregation, encoded

in N . To emphasize the forward looking nature of X , note that it depends on the terminal

value function DT . To emphasize the backward looking nature of N , note that it propagates

the initial condition m0. We then have the following definition.

Definition 1. Fix an initial conditionm0 and a terminal value function DT . An equilibrium

{N
↔
, x̄

↔
} solves the fixed point:

N
↔ = F (N↔;m0, DT ) where F (N ;m0, DT ) ↓ N (X (N ;DT ) ;m0) (6)

and where x̄
↔ = X (N↔;DT ).

Note that this is a canonical definition of equilibrium, where the operator F combines the

two operators N and X defined before. This definition holds for both the continuous time

and the discretized version of the model.

2.2 A Recursive Formulation of the Equilibrium

This section derives a recursive representation of the equilibrium that will be useful to study

the local stability of the equilibrium and to study the planning problem. To derive the

recursive representation we first consider a simple stopping time problem that combines

a(x, t) and v(x, t) into a single equation. We consider the value function

D(x, t) = min
ε↗t

E
[ ∫ ε

t

e
→ω(s→t) (ω0 + ωnN(s)) x(s)ds+ e

→ω(ε→t)
c

∣∣∣ x(t) = x

]
(7)

with terminal condition D(x, T ) = DT (x). The interpretation is that D(x, t) is the optimal

cost of adoption which is made of the flow-opportunity cost until adoption takes place (at

ϱ), plus the actual discounted value of the adoption cost c. The function D(x, t) is related

to a and v by D(x, t) ↓ a(x, t) ↗ v(x, t). Note that a(x, t) ↗ c is the net value of adopting
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immediately while v(x, t) is the net optimal value, that may entail adopting in the future

(see equation (2) and equation (3)).

Under di!erentiability assumptions on D(x, t) we can rewrite equation (7) as a Hamilton-

Jacobi-Bellman (HJB) partial di!erential equation with boundaries, derived in Appendix F,

which satisfies:

ϖD(x, t) = min
{
ϖc , x(ω0 + ωnN(t)) +

ε
2

2
Dxx(x, t) +Dt(x, t)

}
(8)

for all x ↑ [0, U ], t ↑ [0, T ] and terminal condition D(x, T ) = DT (x). Optimality requires

that D(x, t) ≃ c, which yields the value matching condition at the barrier. We are looking

for a classical solution that satisfies:

ϖD(x, t) = x(ω0 + ωnN(t)) +
ε
2

2
Dxx(x, t) +Dt(x, t) (9)

for all x ↑ [0, x̄(t)] and t ↑ [0, T ] with boundary conditions:

D(x̄(t), t) = c Value Matching

Dx(x̄(t), t) = 0 Smooth Pasting (10)

Dx(0, t) = 0 Reflecting

If the solution is regular it also features smooth pasting. Finally, since x = 0 is a reflecting

barrier, the value function has a zero derivative at that point.

Let m(x, t) denote the density of the agents with x that have not adopted at t. The law

of motion of m for all t → 0 is:

mt(x, t) = ϑ

(
1

U
↗m(x, t)

)
+

ε
2

2
mxx(x, t) if 0 ≃ x ≃ x̄(t)

m(x, t) = 0 for x ↑ [x̄(t), U ] (11)

mx(0, t) = 0

and initial condition m0(x) = m(x, 0) for all x ↑ (0, U). The p.d.e. is the standard Kol-

mogorov forward equation (KFE). The density of non-adopters is zero to the right of x̄(t),

since this is an exit point. The last boundary condition is obtained from our assumption that

x reflects at x = 0. The fraction of agents that have adopted the technology is thus given by

N(t) = 1↗

∫
x̄(t)

0

m(x, t)dx. (12)
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We use these equations to provide an equilibrium definition, equivalent to Definition 1, which

emphasizes the dynamic nature of the equilibrium.

Definition 2. An equilibrium is given by the functions {D,m, x̄, N} satisfying the coupled

p.d.e.’s for D and m in (9) and (11), and the boundary conditions in (10), (11), and (12).

We note that this system of p.d.e.’s is involved for two reasons. First, the equations are

coupled through x̄ and N . Second, the equations feature a time-varying free boundary, which

is known to be non-trivial.

3 Equilibria

In this section we establish equilibrium existence, the possibility of multiple equilibria and

equilibria with “delayed adoption” (relative to an e”cient benchmark). We also characterize

equilibria with no adoption, i.e., situations in which given an initial condition m0, no one

will use the technology eventually and conclude by discussing stationary equilibria.

3.1 Monotonicity and Existence of Equilibrium

The next lemma shows that the function X , giving the path of the optimal threshold x̄ as

a function of the path N , is monotone decreasing. Thus, an agent facing a higher path of

adoption will choose to adopt earlier. Moreover, the lemma shows that an agent facing larger

values of ω0 and/or ωn, will also adopt earlier.

Lemma 2. If T < ↘ let the terminal value function be DT (x) and ωn → 0. Let x̄ be

the optimal threshold path for an agent facing the path N . Consider two paths such that

N
↘(t) → N(t) for all t ↑ [0, T ], then x̄

↘(t) ≃ x̄(t) for all t ↑ [0, T ]. Moreover, let ω ↓ (ω0, ωn)

with the corresponding optimal threshold path x̄. If ω↘ → ω then x̄
↘(t) ≃ x̄(t) for all t ↑ [0, T ].

Lemma 2 also holds in the discretized version of the model.4 The proof holds as we verify

the conditions to use Topkis (1978). Thus, once we reformulate the problem in terms of

stopping times, we can apply the monotone comparative statics logic developed by Milgrom

and Shannon (1994) to characterize the policy function.

Next, we show that given the initial condition m0(x), if the path x̄(t) ≃ x̄
↘(t) then

N
↘(t) ≃ N(t) for all t. We need to show that the fraction of non-adopters is decreasing in

x̄(t). This implies that N is monotone decreasing.

4For instance, it holds for a finite di!erence approximation, which we use for some computations, and
which converges to the continuous-time version.
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Lemma 3. Fix m0 and consider two paths for the thresholds x̄ and x̄
↘, satisfying x̄↘(t) → x̄(t)

for all t ↑ [0, T ]. Let N
↘ = N (x̄↘;m0) and N = N (x̄;m0). Then N

↘(t) ≃ N(t) for all

t ↑ [0, T ]. Moreover, fix a threshold path x̄, and consider two initial measures with m
↘
0(x) →

m0(x) for all x ↑ [0, U ], then N
↘ = N (x̄;m↘

0) and N = N (x̄;m0). Then N
↘(t) ≃ N(t) for all

t ↑ [0, T ].

The next theorem uses the monotonicity of X and N , proven in Lemma 2 and Lemma 3, to

establish through equation (6) that F is monotone. This allows us to use Tarski’s theorem

and establish the existence, and possibly the multiplicity, of equilibria.

Theorem 1. Consider either the discretized model or its continuous time limit, let T be

the terminal horizon and ωn → 0. Fix an initial condition m0 and a terminal value function

DT .

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest

equilibrium, {x̄L
, N

L
}, and a largest one, {x̄H

, N
H
}, and any other equilibrium path {x̄, N}

satisfies NL
≃ N ≃ N

H and x̄
L
→ x̄ → x̄

H for all t ↑ [0, T ].

(ii) Let ω↘ → ω, and m
↘
0 ≃ m0 for all x ↑ [0, U ]. Consider the equilibrium {x̄

↘
, N

↘
} with the

largest N ↘ corresponding to {ω↘,m↘
0} and the equilibrium {x̄, N} with largest N corresponding

to {ω,m0}. Then x̄
↘
≃ x̄ and N

↘
→ N for all t ↑ [0, T ].

An important consequence of part (i) of the theorem is that the equilibrium set, given

the initial distribution of non-adopters m0 (and for finite T the terminal valuation DT ), is

a lattice. We can compute the value of the extreme equilibria (i.e., the smallest and the

largest) by iterating on N
k+1 = F(Nk;DT ,m0) for k = 0, 1, . . . , starting from N

0(t) = 1

or from N
0(t) = 0, for all t. The theorem ensures that the limit of this iterative process

converges to a fixed point. Moreover, if the two sequences converge to the same limit, then

the equilibrium is unique.

Two remarks are in order about part (i). First, as mentioned above, we implement the

computations of the extreme equilibrium using the discretized version of the model for a

finite T . Second, while this theorem shows that an equilibrium exists in the continuous time

case, the theorem does not show that the fixed point N or x̄ are continuous functions of time.

As a consequence, the theorem does not establish the existence of a classical solution of the

p.d.e.’s discussed in Section 2.2. Nevertheless for all the numerical examples of the extreme

equilibrium that we computed using the discretized model we have found no behavior that

resembles jumps in the path of N or x̄. A type of equilibrium with a single jump is described

in the next section as a “delayed adoption equilibrium”. There we establish conditions under

which the technology adoption can be shifted to an arbitrary future period.5

5We thank one referee to prod us to extend Theorem 1 to both discrete and continouos time as well as T
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Part (ii) of the theorem focuses on the “high-adoption” equilibrium and establishes a

useful comparative statics result: considering a larger ω, or a “smaller” m0 (more agents

endowed with the app at time zero), leads to more adoption.

3.2 Delayed Adoption Equilibria

In this section, we consider a family of multiple equilibria that are identical except for being

shifted over time, with arbitrary delays in the onset of adoption. This family of equilib-

ria arises under two main assumptions. The first assumption requires a prominent role of

complementarities, namely parameters that satisfy Uω0 < ϖc, so that the adoption decisions

depend on adoption decisions by “others”. The second assumption is a restriction on the

initial condition, namely that no agent starts with the technology at time zero. We have the

following proposition.

Proposition 1. Assume that Uω0 < ϖc, that m0(x) = 1/U , and that T = ↘. Assume

that there is an equilibrium with (N, x̄) such that N(0) > 0 and x̄(0) < U . Let t0 > 0 but

otherwise arbitrary. Then there is an equilibrium (N ↘
, x̄

↘) with N
↘(0) = 0 and x̄

↘(t) = U for

t ↑ [0, t0), and with N
↘(t) = N(t↗ t0) and x̄

↘(t) = x̄(t↗ t0) for all t ↑ [t0,↘).

A few comments are in order. First, the interpretation of Uω0 < ϖc is clear. It says that

using technology when nobody else uses it (even if x were kept at its highest value forever)

does not compensate the adoption cost. Second, the delay in adoption featured in the (N ↘
, x̄

↘)

equilibrium is arbitrary and hence depends on an extreme amount of coordination of agents

agreeing on when to adopt. Third, an equilibrium with t0 > 0 cannot be the highest one,

since it is dominated by the equilibrium with zero delay. Fourth, the initial equilibrium (N, x̄)

can be the highest one.

We note that the previous proposition assumes that the equilibrium (N, x̄) starts with

N(0) > 0 and x̄(0) < U . These assumptions imply that, in the corresponding equilibrium

with a delay t0 > 0, there is a downward jump in x̄
↘ and an upward jump in N

↘ at time t0.

The next proposition shows that the assumption that N(0) > 0 and x̄(0) < U is without loss

of generality.

Proposition 2. Assume that Uω0 < ϖc and that m0(x) = 1/U . Then there is no

equilibrium in which x̄(0) = U , x̄(t) < U for t > 0, and x̄(t) is continuous at t = 0.

The proposition establishes that if there exist an equilibrium with adoption, i.e. one

where x̄(t) < U , and the economy starts with zero adoption, then the threshold x̄(t) must

finite / infinite. We thank the editor and one referee for suggesting us to investigate the possibility of jumps
when there are strong strategic complementarities.
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display a jump, which is necessary to create a significantly large mass of adopters to initiate

the technology di!usion. Given a calibrated value of ϖ, we estimate the parameters ω0 and

c, among others, in Section 8: for our estimated values, we find that ω0U > ϖc, that is, the

opposite inequality from the one that assumed in the propositions above.

3.3 No-Adoption Equilibrium

The setup may feature an equilibrium with zero adoption, i.e., x̄(t) = U for all t. For

simplicity we focus on the case where T = ↘. This case is particularly easy because agents’

decisions are in a corner. We characterize the basin of attraction for such equilibrium, i.e.,

we find a threshold for the number of adopters N , such that a no-adoption equilibrium exists

if and only if at t = 0 the mass of agents with the technology is smaller than N .

Proposition 3. A no-adoption equilibrium with x̄(t) = U and N(t) = N(0)e→ϑt for all

t → 0 exists if and only if 1↗
∫

U

0 m0(x)dx ≃ N , where

ϖc

U
= ω0 [1 + g(φU)] +N

ϖωn

ϖ+ ϑ
[1 + g(φ↘U)] (13)

φ ↓

√
2ϖ

ε2
, φ

↘
↓

√
2(ϖ+ ϑ)

ε2
and g(y) ↓

csch(y)↗ coth(y)

y
↑ (↗1

2 , 0) . (14)

Note that N > 0 if and only if ωc

U
> ω0 [1 + g(φU)]. Moreover, if N > 0 we have:

(i) N is an increasing function of ε, satisfying

ϖ+ ϑ

ϖωn

(
ϖc

U
↗ ω0

)
≃ N ≃

ϖ+ ϑ

ϖωn

(
2
ϖc

U
↗ ω0

)
, (15)

where the lower (upper) boundary is reached as ε ↔ 0 (ε ↔ ↘).

(ii) N is a decreasing function of ωn.

An immediate corollary of this proposition is that m0(x) = 1/U is an invariant distribution

provided that N → 0, i.e., if the economy starts with no adoption, then it may remain in

that equilibrium forever (no adoption is a stationary equilibrium). That N > 0 requires ω0

to be small is easily understood: if ω0 is large agents with a high x will find it profitable to

adopt regardless of what the others choose. Likewise, that N > 0 is increasing in ε implies

that if agents are hit by larges shocks the no-adoption equilibrium is more likely to occur.

This result follows because, for a given U , a large ε makes the reversion to the mean faster,

lowering the benefit of adoption. Finally, if ωn is large then it is more profitable to coordinate

on high N and the basin of attraction of the no-adoption equilibrium is smaller.

12



3.4 Stationary Equilibria

In this section we let T = ↘ and analyze the stationary equilibria of the continuous time

model. We look for an initial condition m0, such that the distribution is invariant, so that

both x̄(t) = x̄ss and N(t) = Nss are constant through time. We will show that convergence

to the stationary equilibrium must be gradual, i.e., that it is not possible to “jump” to the

stationary equilibrium given a generic initial condition in the model where ε > 0.6

A stationary equilibrium is given by two constant values of Nss and x̄ss that solve the

time-invariant version of the partial di!erential equations presented in Section 2.2. From a

mathematical point of view the equilibrium is a fixed point. Given Nss, D̃ and x̄ss solve:

ϖD̃(x) = x(ω0 + ωnNss) +
ε
2

2
D̃xx(x) if x ↑ [0, x̄ss] Value of Adoption

D̃x(0) = 0 Reflecting

D̃(x̄ss) = c Value Matching

D̃x(x̄ss) = 0 Smooth Pasting .

Conversely, given x̄ss, the density m̃ solves

0 = ↗ϑm̃(x) + ϑ
1

U
+

ε
2

2
m̃xx(x) KFE if x ≃ x̄ss

m̃(x̄ss) = 0 and m̃x(0) = 0 Exit and Reflecting .

Notice that the (stationary) equilibrium m̃(x) and x̄ss solve the fixed point

Nss = 1↗

∫
x̄ss

0

m̃(s)dx.

We begin by solving for D̃(x) and x̄ss given a value for Nss (see Appendix A.1 for details).

Using the solution for D̃ we can solve for Xss : [0, 1] ↔ [0, U ], a function that gives the

optimal stationary threshold as a function of a given Nss. The monotonicity properties of

the function D̃ on the parameters Nss, ωn, c and ω0 give the following characterization of the

threshold Xss.

Lemma 4. The function Xss is decreasing inNss, strictly so at the points where 0 < x̄ss < U .

Fixing a value of Nss, the function Xss is strictly increasing in c, strictly so at the points

where 0 < x̄ss < U . Fixing a value of Nss, the function Xss is strictly decreasing in ω0

6An immediate jump to the stationary equilibrium might instead occur in a model with ω = 0 (See the
Online appendix J of Alvarez et al. (2023b)).
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and ωn at the points where 0 < x̄ss < U . Moreover, we have the following expansion:

Xss(Nss) =
ωc

ϖ0+ϖnNss

+ ϱ≃
2ω

+ o(ε).

Since the function Xss(Nss) is decreasing in Nss, it has an inverse, X→1
ss

, given by:

X
→1
ss

(x̄ss) =
1

ωn



 ϖc


x̄ss + Ā1e

ςx̄ss + Ā2e
→ςx̄ss


↗

(1+ς(Ā1e
ωx̄ss→Ā2e

→ωx̄ss))(eωx̄ss+e→ωx̄ss )

ς(eωx̄→e→ωx̄ss )

↗ ω0



 where

Ā1 ↓
1

φ


1↗ e

→ςU


(e→ςU ↗ eςU)
, Ā2 ↓

1

φ


1↗ e

ςU


(e→ςU ↗ eςU)
and φ ↓


2ϖ/ε2. (16)

Note that, from the expansion given in Lemma 4, fixing x̄ss, then X
→1
ss

(x̄ss) is increasing in

ε in a neighborhood of ε = 0. Provided that ωn > 0 we have

X
→1
ss

(x̄ss) ⇐
1

ωn

(
cϖ

x̄ss ↗ ε/
⇒
2ϖ

↗ ω0

)
.

Next we can solve the Kolmogorov forward equation for m̃(x), given a barrier x̄ss subject

to an exit point and to the boundary conditions coming from the reflecting barriers. We

denote the corresponding value of the fraction that have adopted as Nss(x̄ss). Solving this

equation we obtain

Nss(x̄ss) = 1↗
x̄ss

U
+

tanh (↼x̄ss)

U↼
where ↼ ↓


2ϑ/ε2. (17)

Inspection of equation (17) yields the following characterization of Nss.

Lemma 5. Fix ↼ > 0, then Nss(x̄) is strictly decreasing in x̄ss. Fixing x̄ > 0, then Nss is

strictly increasing in ↼, and hence strictly decreasing in ε. Moreover, we have the expansion:

Nss(x̄) = 1↗ x̄ss

U
+ ϱ

U
≃
2ϑ

+ o(ε).

As is intuitive, the value of Nss(x̄ss) is decreasing in the level of the barrier x̄. The system

given by equation (16) and equation (17) determines x̄ss and Nss. In particular, a stationary

equilibrum is described by the pair {x̄ss, Nss}, which solves

Nss ↓ Nss(x̄ss) = X
→1
ss

(x̄ss).

Next, we summarize the behavior of the stationary equilibrium for small values of ε.

We label the stationary equilibrium with superscripts {H,L} to hint at the associated High

or Low level of adoption, so that x̄
H

< x̄
L. Indeed setting ε = 0 in the two expansions

given in the previous two lemmas one obtains a quadratic equation for x̄ss/U whose solution,
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whenever in (0, 1), gives the two interior steady states.

Proposition 4. Assume that ϑ > 0 and that the parameters ω0, ωn, c and ϖ are such that

there are two interior stationary equilibria in the deterministic case of ε = 0, and label them

as x̄H

ss
< x̄

L

ss
. Then, (i) there exists a ε̄ > 0 such that for all ε ↑ (0, ε̄) there are two interior

stationary equilibria with x̄
H

ss
< x̄

L

ss
. (ii) The threshold for each stationary equilibrium is

continuous with respect to ε at ε = 0. (iii) The sign of the comparative static di!ers across

stationary equilibria, with

↽x̄
H

ss

↽c
> 0 >

↽x̄
L

ss

↽c
and

↽x̄
L

ss

↽ω0
> 0 >

↽x̄
H

ss

↽ω0
.

The proposition shows that the high adoption stationary equilibrium behaves in an intuitive

way, with more adoption (a lower x̄H

ss
) associated with a smaller adoption cost (c), or with

a larger intrinsic value of the technology (ω0). The comparative statics for the low adoption

stationary state are just the opposite: adoption is higher as the adoption cost increases.

The latter (unrealistic) feature, and the unstable nature of the low adoption equilibrium (see

the next section), will lead us to focus on the high adoption equilibrium in our quantitative

analysis.

Figure 1: Stochastic Stationary Equilibria: Density of non-adopters: m̃(x)

High and Low Adoption Stationary Equilibria

Figure 1 shows the densities of the invariant distribution of the high- and low-adoption

equilibria. A notable feature of the stationary distribution of non-adopters is that, provided
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ε > 0, the distibution features agents with “low x, namely with x(t) < x̄ss, who have the

technology. These are agents who adopted the technology in the past (for some t
↘
< t when

x(t↘) > x̄(t↘), and whose x decreased over time. As a result, m̃(x) < 1/U when ε > 0, and

the density of non-adopters below x̄ss is not uniform. Given that the density takes time

to adjust, the stochastic model features dynamics in the adoption of a new technology: for

instance if the economy starts with m0 = 1/U , it takes time to move from the initial to the

invariant distribution, as agents adopt when x(t) > x̄(t) and it takes time for the x↘
s to crawl

back below the stationary threshold. In other words, this form of the invariant distribution

and the fact that agents follow a threshold rule implies that there is no equilibrium where

at some finite time t the economy jumps to the steady state. Instead, as mentioned above,

such a jump must occur in a model where x is heterogeneous across agents and ε = 0 for a

large set of initial conditions (see Proposition 20 in Appendix J in Alvarez et al. (2023b)).

4 Stability of Stationary Equilibria

In this section we analyze the local stability of the stationary equilibria. We explore the

question by perturbing the stationary distribution of adopters, using techniques from the

Mean Field Game literature developed in Alvarez, Lippi and Souganidis (2023a). For this

purpose, we use the equilibrium Definition 2. This dynamical system is infinite-dimensional

because the state, at every time t, is given by the entire density m(x, t).

The objective is to consider the stationary equilibrium m̃ and ask if, starting from a

condition m0 close to m̃, the economy converges to m̃. As the system is infinite-dimensional,

many “deviations” are possible. Any initial condition can be described by m0(x) = m̃(x) +

⇀⇁(x), for some ⇁ satisfying
∫

U

0 ⇁(x)dx = 0. The sense in which the analysis is local is that

we di!erentiate the system with respect to ⇀ and evaluate it at ⇀ = 0. The alert reader will

notice that the local dynamics of a system in Rq are encoded in a q⇑q matrix. The analogous

infinite dimensional object is a linear operator that will be presented below.

We begin the analysis with the approximation of x̄(t) = X (N)(t). That is, we study

how perturbing the aggregate path of adoption N leads to adjusting the decision rule for

threshold path x̄. To do this, we take the directional derivative (Gateaux) with respect to

an arbitrary perturbation n of a constant path N . In particular, we consider paths defined

by N(t) = Nss + ⇀n(t) around the stationary value Nss. We denote this Gateaux derivative

by ȳ, so that x̄(t) ⇐ x̄ss + ⇀ȳ(t).

Lemma 6. Fix a stationary equilibrium with interior x̄ss, and its corresponding Nss. Let

DT be equal to the stationary value function D̃ corresponding to that stationary equilibrium.

Let n : [0, T ] ↔ R be an arbitrary perturbation. Then
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ȳ(t) ↓ lim
φ⇐0

X (Nss + ⇀n; D̃)(t)↗ X (Nss; D̃)(t)

⇀

=
ωn

D̃xx(x̄ss)

∫
T

t

G(ϱ ↗ t)n(ϱ)dϱ, (18)

where

G(s) ↓
↑

j=0

cje
→↼js → 0 , ψj ↓ ϖ+

ε
2

2

(
π(12 + j)

x̄ss

)2

and cj ↓ 2

(
1↗

cos(πj)

π(j + 1
2)

)
,

where D̃xx(x̄ss) < 0 is the second derivative of the stationary value function:

D̃xx(x̄ss) =
ϖc↗ x̄ss [ω0 + ωnNss]

ε2/2
, Nss = 1↗

x̄ss

U
+

tanh (↼x̄ss)

↼U
and ↼ =

√
2ϑ

ε2
.

Thus, we can write x̄(t) = x̄ss + ⇀ȳ(t) + o(⇀). Note that G is positive and Dxx is negative,

so the e!ect of the future path on the current value is negative, which is consistent with the

property that X is decreasing. Also note that it is proportional to ωn, so if ωn = 0, then the

threshold will be constant. Thus, the approximation of x̄(t) depends on the perturbation

of the path of N from t to T , given by n(s) for s = [t, T ]. The proof of the proposition

is obtained by jointly di!erentiating with respect to ⇀ the system defined by D and x̄ in

equation (9) and equation (10). This yields a new p.d.e., and new boundary conditions. The

expression for ȳ is obtained once we solve this new p.d.e., see the proof in Appendix C.1.

Now we turn to the perturbation for the fraction of the adopters, as a function of the

threshold path and of a perturbation of the initial condition. We approximate N(t) =

N (x̄,m0)(t) by taking the directional derivative (Gateaux) with respect to an arbitrary per-

turbation ȳ of a constant path x̄ and a perturbation ⇁ on the stationary density m̃. In

particular, we consider paths defined by x̄(t) = x̄ss + ⇀ ȳ(t) around the stationary threshold

xss, and m0(x) = m̃(x) + ⇀ ⇁(x). We will denote this Gateaux derivative by n.

Lemma 7. Fix the interior threshold x̄ss of a stationary equilibrium and its corresponding

Nss, and let m̃ be the corresponding invariant distribution of non-adopters. Let ⇁ : [0, x̄ss] ↔

R be an arbitrary perturbation to the distribution, and let ȳ : [0, T ] ↔ R be an arbitrary

perturbation of the threshold. Then

n(t) ↓ lim
φ⇐0

N (x̄ss + ⇀ȳ; m̃+ ⇀w)(t)↗N (x̄ss; m̃)(t)

⇀

= n0(⇁)(t) +
m̃x(x̄ss)ε2

x̄ss

∫
t

0

J(t↗ ϱ)ȳ(ϱ)dϱ (19)
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where
J(s) =

↑

j=0

e
→µjs with µj = ϑ +

1

2
ε
2

(
π(12 + j)

x̄ss

)2

(20)

n0(⇁)(t) ↓ ↗

↑

j=0

x̄ss

π(12 + j)

⇓▷j,⇁⇔

⇓▷j,▷j⇔
e
→µjt, (21)

▷j(x) ↓ sin

((
1

2
+ j

)
π

(
1↗

x

x̄ss

))
for x ↑ [0, x̄ss] (22)

⇓▷j,⇁⇔

⇓▷j,▷j⇔
=

2

x̄ss

∫
x̄ss

0

▷j(x)⇁(x)dx and m̃x(x̄ss) = ↗
↼

U
tanh(↼x̄ss).

Thus, we can write N(t) = Nss + ⇀n(t) + o(⇀). This formula encodes the e!ect of two

perturbations: ⇁ and ȳ. The former is the perturbation on the initial condition m0, whose

e!ect is in the term n0(⇁)(t). We note that n0(⇁)(t) is the e!ect at time t on the path N(t)

triggered by a perturbation of the initial condition keeping the threshold rule x̄ fixed. The

function n0(⇁) can be further reinterpreted by considering the limiting case of a perturbation

⇁ given by a distribution concentrated at x = x̂ ≃ x̄ss, i.e., a Dirac’s delta function as

⇁(x) = ◁x̂(x). In this case,

n0(◁x̂)(t) = ↗

↑

j=0

2
sin

(
1
2 + j


π

(
1↗ x̂

x̄ss

))

(12 + j)π
e
→µjt.

The e!ect of the perturbation, ȳ, on the path of the threshold, x̄(s), is captured by the second

term in equation (19). This term gives the e!ect at time t on the path N(t) of a perturbation

of the threshold rule x̄, keeping the initial condition m̃ fixed. Also, consistent with our general

result for N , the e!ect of the threshold is negative, as J > 0 and m̃x(x̄ss) < 0.

For future reference it is useful to understand the behavior of n0(t) as function of time.

In particular, the rate at which the perturbation ⇁ to the initial distribution converges back

to the stationary distribution, while keeping x̄(t) = x̄ss. This rate is given by the value of

µ0 = ϑ + ϱ
2

8

(
↽

x̄ss

)2

, i.e., the dominant eigenvalue.7

The next step is to use the last two lemmas to derive one equation for the linearized

equilibrium as a function of the perturbed initial distribution m0(x) = m̃(x) + ⇀⇁(x). We

combine equation (18) and equation (19) to arrive to a single linear equation that n(t) must

solve as a function of ⇁.

Theorem 2. Fix an interior threshold x̄ss for a stationary state, with its corresponding

7The proof is in Appendix C.2 and resembles the one for the previous proposition.

18



Nss, and let m̃ be the corresponding invariant distribution of non-adopters. Let m0(x) =

m̃(x) + ⇀⇁(x). Let DT be equal to the value function D̃ corresponding to that stationary

equilibrium. The linearized equilibrium solves

n(t) = n0(⇁)(t) +$

∫
T

0

K(t, s)n(s)ds, (23)

where n0(⇁)(t) is given in Lemma 7 and $ ↓
m̃x(x̄ss)ϱ2

ϖn

x̄ssD̃xx(x̄ss)
> 0. The kernel K is given by

K(t, s) =
↑

i=0

↑

j=0

cje
→µit→↼js

[
e
(µi+↼j)min{t,s}

↗ 1

µi + ψj

]
> 0. (24)

Moreover, Lip
K

↓ sup
t

∫
|K(t, s)|ds ≃

(
x̄
2
ss

ϱ2

)2

. Furthermore, if $Lip
K

< 1 there exists a

unique bounded solution to equation (23) which is the limit of

n =

I +$K +$2

K
2 + . . .


n0(⇁) where K(g)(t) ↓

∫
T

0

K(t, s)g(s)ds, (25)

and where K
j+1(g)(t) ↓

∫
T

0 K(t, s)Kj(g)(s) ds for any bounded g : [0, T ] ↔ R.

A few remarks are in order. First, note that K depends on ωn as µj,ψj are a function of

x̄ss, which is itself a function of ωn. The coe”cient $ depends on ωn directly and indirectly

via x̄ss. Hence equation (23) depends on which stationary equilibrium we focus on. Second, if

we discretize time so that t ↑ {#t(j↗ 1) : j = 1, . . . , J} for #t =
T

J→1 , as done in Section 2.1,

then the operator K is a J ⇑J matrix with elements K(ti, tj), and n0, n are J ⇑ 1 vectors, so

that equation (23) becomes the linear equation n = n0 +$K n. Third, the fact that $K > 0

implies that the terms $K + $2
K

2 + . . . in equation (25) give the amplification over and

above n0, due to the time-varying path of the barrier x̄.

Figure 2 illustrates the stability of the high and low adoption equilibria, respectively, in

Panels (a) and (b). Each panel considers two shocks that displace a small mass of agents

away from the invariant distribution of non-adopters and endows them with the app. The

blue line depicts the case where the app is given to agents with low benefit, namely with

x ⇐ 0, while the red line considers a perturbation where the app is given to agents with a high

benefit, namely with x ⇐ x̄ss.8 Two remarks are due. First, the high adoption equilibrium

is locally stable, as displayed in Panel (a): for all shocks considered, the system returns to

its invariant distribution. We also note that the half life of the shock is much shorter when
8Parameters used for illustration: ε0 = 26.32; εn = 5.72 · ε0; U = 1; ϑ = 0.0278; r = 0.05; ω = 0.032;

c = 2 · 10.54 · ε0.

19



Figure 2: Perturbation of Stationary Equilbria

(a) High Adoption Stat. Eqbm. (b) Low Adoption Stat. Eqbm.

the perturbation assigns the app to agents with a high benefit (x ⇐ x̄ss), as these agents

were going to get the app soon anyways. Second, Panel (b) reveals that the low adoption

equilibrium is unstable: the dynamics of the system following a perturbation are explosive,

i.e., the sequence in equation (25) does not converge so that the system does not return to

the invariant distribution after the shock. To appreciate the explosive nature of the path

nearby the low activity stationary equilibrium, notice the di!erence in the scales of the two

panels.

5 The Planning Problem

This section sets up the planning problem, characterizes of its solution, and shows how it can

be decentralized as an equilibrium with a subsidy.9 The planner solves a non-trivial dynamic

problem since the state of the economy is an entire distribution.

At time zero the planner solves:

max
{x̄(t)}

∫ ↑

0

e
→rt

∫
U

0

(1/U ↗m(s, t))  
Density of adopters

s (ω0 + ωnN(t))  
Flow benefit

ds dt

↗

∫ ↑

0

e
→rt

c (Nt(t) + ϑN(t)) dt
  

Flow of adoption cost: gross new adoptions



9Appendix D.1 characterizes the stationary solution of this problem. Appendix D.5 uses a linearized
version of the problem to analyze dynamics around its invariant distribution, an exercise that is akin to the
one of Section 4.
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subject to

N(t) = 1↗

∫
x̄(t)

0

m(s, t)ds for all t

mt(x, t) = ↗ϑ (m(x, t)↗ 1/U) +
ε
2

2
mxx(x, t) for x ↑ (0, x̄(t)) and all t → 0 KFE

m(x, t) = 0 for x ↑ [x̄(t), U ] and all t → 0 Adoption

mx(0, t) = 0 for all t → 0 Reflecting

m(x, 0) = m0(x) for all x . Initial condition

The objective function of the planner integrates the lifetime utility of agents using as a

weight the discount factor e→rt for the cohort born at t. The first term contains the utility

flow of the agents who use the technology. The second term subtracts the cost of adoption,

where c(Nt(t) + ϑN(t)) is the gross flow cost of adoption at time t. This flow cost is driven

by the inflow of new adopters Nt(t) and by the replacement of dead agents (who had adopted

in the past) by newborns.10 The first constraint defines N(t), the second constraint is the

KFE for the density of non-adopters, m. As before, the density is zero to the right of x̄(t),

there is an exit point at x̄(t), and there is a boundary condition from the reflection at zero.

At each time t the planner decides a threshold x̄(t) that determines adoption, taking as

given the initial conditionm0(x) and the law of motion of the densitym (a!ected by the choice

of x̄). To characterize the solution, we write the Lagrangian for this problem. We denote the

Lagrange multiplier of the KFE equation by e
→rt

0(x, t) and replace N(t) and Nt(t) by the

corresponding definition. To derive the p.d.e’s for non-adopters, we first adapt the planning

problem to a discrete-time discrete-state problem using a finite-di!erence approximation. In

this set up, we allow for a more general policy, i.e., not necessarily a threshold rule. We

obtain the first order conditions for a problem in finite dimensions and take limits to find the

corresponding p.d.e’s, summarized in the following proposition.11

Lemma 8. A planner’s problem is given by {x̄(t),0(x, t),m(x, t)} such that adoption

occurs for x → x̄(t), and the Lagrange multiplier 0, and the density of non-adopters m solve

10At every moment there is an inflow ϑ of newborns without the app. A fraction 1↗ x̄(t)
U of the newborns

immediately pays the cost c and adopts, see Appendix D.2 for details.
11We provide details of this derivation in Appendix D.3.
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the p.d.e. for non-adopters:

ϖ0(x, t) = x

(
ω0 + ωn[1↗

∫
x̄(t)

0

m(s, t)ds]
)
+ ωn

(
U

2 ↗

∫
x̄(t)

0

m(s, t)s ds
)

(26)

+ ϱ
2

2 0xx(x, t) + 0t(x, t) for x ≃ x̄(t) and t → 0

0(x, t) = c for x → x̄(t) and t → 0

0x(x̄(t), t) = 0 for t → 0 (27)

0x(0, t) = 0 for t → 0

and mt(x, t) = ϑ

1/U ↗m(x, t)


+ ϱ

2

2 mxx(x, t) for x < x̄(t) and t → 0

m(x, t) = 0 for x → x̄(t) and t → 0

mx(0, t) = 0 for t → 0

m(x, 0) = m0(x) for all x .

This lemma has two important consequences. First, it allows us to compute the solution

of the planning problem following similar steps as the ones used to compute the equilibrium in

Section 3.1. Second, it indicates how to decentralize the optimal allocation as an equilibrium.

Define Z(t) ↓
U

2 ↗
∫

x̄(t)

0 m(s, t)s ds → 0 and note that this non-negative magnitude is the

di!erence between the average x in the population, U/2, and the average x among those who

have not adopted the technology (the integral term). Comparing the p.d.e. for the Lagrange

multiplier 0 in equation (26) with the p.d.e. for D that characterizes the equilibrium in

equation (9), we see that these equations only di!er in the flow term ωnZ(t). Thus, if agents

who adopt the technology are given a flow subsidy ωnZ(t) every period after they have adopted

(independent of the app’s usage), then the planner allocation is an equilibrium. Clearly, this is

equivalent to a once and for all payment to agents adopting at t equal to ωn
∫↑
t

e
→ω(s→t)

Z(s)ds.

Note that ωnZ(t) contains the inframarginal valuation of the technology for those that use it,

so the subsidy’s work by correcting the externality associated with the individual adoption.

We summarize this discussion in the following theorem.

Theorem 3. Fix an initial conditionm0 and the solution to the planner’s problem {x̄,0,m}.

The planner’s allocation coincides with an equilibrium with the same initial conditions and

a time-varying flow subsidy paid to adopters given by ωnZ(t), where

Z(t) ↓ U

2 ↗

∫
x̄(t)

0

m(s, t) s ds for all t → 0 (28)

The subsidy ωnZ is independent of x.
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For future reference, we define Z ↓ Z(x̄;m0) as the solution of the path for Z defined

in equation (28). In particular, given x̄ and m0, we solve for m using the KFE and then

compute Z.

Consider the path x̄ that solves the p.d.e. ϖ0(x, t) = x (ω0 + ωnN(t))+ωnZ(t)+
ϱ
2

2 0xx(x, t)+

0t(x, t) with the three boundaries given in equation (27) given the paths of N and Z and

terminal condition 0(x, T ) = 0T (x). Let x̄ = X
P (N,Z;0T ) denote the functional, defined

as the X in Section 2.1, where the superscript P denotes the planning problem. Note that,

using the definitions for X
P
,Z and N the planner’s problem must satisfy the fixed point

x̄
↔ = H(x̄↔

,0T ,m0) where H(x̄;0T ,m0) ↓ X
P (N (x̄;m0),Z(x̄;m0);0T ). We can use the

analysis used in Section 3, based on monotonicity, to characterize the solution to this fixed

point problem, and to compute it.

Figure 3 illustrates how the application of the optimal subsidy leads to a high adoption

equilibrium. In Panel (a) of the figure, we plot the time path of the share of adopters, N(t),

for the planning problem, using the stationary equilibrium distribution of non-adopters as

the initial distribution (i.e., m0(x) = m̃(x)). Let denote by Nss the value of the equilibrium

steady state. In the planning problem, the path of N(t) jumps immediately from Nss (at the

time the subsidy is introduced) and gradually converges to the stationary distribution for

the planning problem.12 Panel (b) shows the time path of the optimal subsidy to implement

the optimal, Z(t), which starts at the value Z(0) = U

2 ↗
∫

x̄H

0 m̃(s)sds and increases over

time. In this example, the high-adoption equilibrium has partial adoption, i.e., Nss < 1, but

the e”cient allocation, as can be seen in panel (a), converges to almost full adoption of the

technology.

Figure 3: Planning Problem: m0(x) = m̃(x)

(a) N(t) (Optimal) (b) Z(t)

12In this example, Nss = 0.42.
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6 Adding Information Di!usion

We incorporate learning about the existence of the technology through a simple extension of

the celebrated Bass’s (1969) model of information di!usion. We do so both for completeness

and to accommodate the evidence on knowledge on the technology presented in Section 8.

We first describe how the learning process works, then present the extension to the baseline

model, and conclude with two simpler special cases: ωn = 0 or ε = 0.13

Dynamics of Learning. We assume newborn agents are initially uninformed and become

informed by randomly matching with informed agents. The set I(t) of informed agents is

divided into N(t) agents who have adopted and M(t) agents who are informed but have not

adopted, so that I(t) = N(t) +M(t). Both types of informed agents transmit information,

so the dynamics of I(t) are independent of agents’ adoption decisions. The law of motion

of m needs to be modified to include the inflow of informed agents as in a random di!usion

model:

mt(x, t) =
ε
2

2
mxx(x, t) +

10

U
I(t)(1↗ I(t))↗ ϑm(x, t) all t → 0 and x ↑ [0, x̄]

m(x, t) = 0 all t → 0 and x ↑ [x̄, U ]

mx(0, t) ε = 0 all t → 0

where I(t) denotes the fraction of the population informed about the technology, and the

parameter 10 is the parameter governing the number of meetings per unit of time between

those informed, I(t), and those uninformed, 1↗I(t). The term ⇀0

U
I(t)(1↗I(t)) represents the

flow of agents per unit of time who learn about the app. The time path for I(t) has a closed

form solution: it is initially convex, then becomes concave, and converges to Iss = 1↗ ϑ/10.

The entire path of I depends only on the parameters (ϑ, 10) and on the initial value of

I(0). If I(0) is su”ciently small, then I(t) remains low for an extended period of time. See

Appendix E for additional details.

Baseline model (ε > 0, ωn > 0). Above, we described the law of motion of m for a

given path of x̄. We now describe the determination of x̄, which applies only to informed

agents. The variational inequality governing the adoption decision (i.e., net value of adoption

a(x, t) ↗ c and the net optimal value v(x, t)) are the same as in the model with strategic

complementarities, since adoption can occur only after agents become aware of the technology.

Thus, the only change lies in the law of motion of m described above. Theorem 1 and

13We thank the editor and one referee for suggesting us to investigate the possibility of jumps and the role
of ω = 0.
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Theorem 3 extend in a straightforward manner to this case. Also, as t ↔ ↘, so that

I(t) ↔ Iss this model has stationary states which are a scaled version of the ones for the

model without learning.

Next we analyze the interaction between learning and strategic complementarity. The

following proposition considers a case of strong strategic complementarity with an initial

condition in which no agent has the technology. In this case, for su”ciently small I(0), there

is a period where there is no adoption followed by a downward jump in x̄ and an upward

jump in N (coming from zero):

Proposition 5. Assume that Uω0 < ϖc. Then for any ϱ > 0, there is a I(0) small enough,

such that x̄(t) = U for t ↑ [0, ϱ).

The intuition behind Proposition 5 is straightforward: until there is a critical mass of

informed agents, I(ϱ), adoption cannot occur. Recall that for any ϱ > 0 and ⇀ > 0, there

exists an I(0) small enough such that I(t) < ⇀ for all t ↑ [0, ϱ). It then follows that adoption

is bounded above by N(t) ≃ I(t), and, given the assumptions of the proposition, even agents

with the highest x find it optimal to delay adoption (since Uω0 < ϖc). Indeed the proof is

almost a line-by-line adaptation of the proof of Proposition 2. Figure E3 in the appendix uses

parameters and initial conditions as in Proposition 5 to illustrate that there is no adoption as

long as I(t) < I(ϱ). This figure also shows that the multiple equilibria, involving the further

delay in adoption described in Proposition 2, extends to the model with learning.14

We conclude this section by considering two simpler versions of the learning model.

Learning without strategic complementarity. This setup, developed in detail in Ap-

pendix E.1, considers a “pure” learning model without complementarities (ωn = 0) in which

adoption benefits are random (ε > 0). Informed agents can pay the cost c and adopt. We

show that the optimal decision for informed agents is given by a time-invariant threshold x̄,

which is independent of the network size. This invariance implies that there is no selection

in the adoption of the technology: early and late adopters are similar agents in terms of

their x, di!ering only in the timing of when they learn about the technology. This prediction

contrasts with the evidence on selection discussed in Section 7.2.1. The model has a unique

constrained-e”cient equilibrium with a logistic S-shaped path for N when the initial share

of informed agents is small. Along the equilibrium path, the dynamics of N(t) are fully

determined by the dynamics of I(t).

14With learning, the continuation of the highest equilibrium di!ers from that of the equilibrium with delay.
This di!erence arises because, when ω > 0, agents who adopted before the delay continue to contribute to
the size of the network even if their x falls below the adoption threshold.
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Learning with complementarities and fixed types. A learning model with comple-

mentarities (ωn > 0) is analyzed in details in Appendix E.2, where the idiosyncratic benefit

of adoption x is deterministic (ε = 0). In this model the adoption benefit depends on the

size of the network N(t), while the agent type x is immutable. We focus on the case where

either none or very few agents start with the technology –defined properly in Appendix E.2.

In this case, due to the network e!ects (ωn > 0), the optimal decision for informed agents is a

monotone, time-varying threshold x̄(t), with an associated monotone (increasing or decreas-

ing) path for N(t). The model may feature multiple constrained-e”cient equilibria, and the

dynamics of the equilibrium path N(t) are again determined by the dynamics of I(t).

The simplicity of the model with ε = 0 has both advantages and disadvantages. One

advantage is that it allows for a complete characterization of the critical delay threshold I(ϱ)

given in Proposition 5. Another advantage is that the equilibrium path starting from low

adoption can be computed explicitly. On the other hand, the reason the equilibrium can

be computed explicitly is that is is essentially static. In particular, the level of N(t) at the

highest equilibrium is just a function of I(t). This implies that if we consider an “MIT” shock

that removes the technology from a group of agents who had previously adopted, these agents

immediately re-adopt, and the equilibrium returns to its pre-shock position, as described in

Proposition 16. Instead, in a model with ε > 0, re-adoption occurs gradually.

7 Application: SINPE, A Digital Payments Platform

In May 2015, the Central Bank of Costa Rica (BCCR) launched SINPE Móvil (hereafter,

SINPE), a digital platform that enables users to make money transfers using their mobile

phones.15 To utilize SINPE, users must have a bank account at a financial institution and

link it to their mobile number. According to the BCCR, the primary objective of SINPE was

to become a mass-market payment mechanism that could reduce the demand for cash as a

method of payment. As such, SINPE was originally designed for relatively small transfers,

which are not subject to any fee as long as they do not exceed a daily sum. The maximum

daily amount transferred without a fee varies by bank; for most users, it is approximately

$310, although some banks have lower limits of $233 and $155.16 The average transaction

size in SINPE is about $50, and has slowly decreased over time, as shown in Figure G2.

While, in theory, firms are allowed to adopt SINPE and conduct transactions within the

app, in practice, transactions involving firms represent less than 5% of all payments. This

15SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos Electrónicos) in Spanish.

16Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones. These amounts correspond with 2021 limits and exchange rates.
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motivates us to study adoption through the lens of our model while focusing on peer-to-peer

transactions where small agents trade with each other, rather than one with a few non-

atomistic players (large firms). Appendix G.2 presents details on the transactions by user

type and between networks and discusses the slow adoption for person-to-business(P2B) and

business-to-business (B2B) payments.

7.1 Data

This section describes the battery of administrative datasets used in the paper. First, we

leverage data on SINPE transactions. Our data on SINPE usage is comprehensive: For

each user in the country, we have o”cial records on the exact date when she adopted the

technology, along with records on each transaction made. In particular, for each transaction,

the data records the amount transacted along with the individual identifier of the sender

and the receiver of the money. Records also include the sender’s and the receiver’s bank.

Importantly, this information is available, not only for individuals, but also for firms.

We also leverage information on networks of coworkers for each formally employed in-

dividual, along with their income. Matched employer-employee data is obtained from the

Registry of Economic Variables of the Central Bank of Costa Rica, which tracks the uni-

verse of formal employment and labor earnings. The data include monthly details on each

employee, including her earnings and employment history spanning SINPE’s lifetime (2015-

2021).17 With this information, we can identify which people are working at the same firm in

a given month to construct networks of coworkers which can be matched to SINPE records.

Networks of coworkers vary at a monthly frequency as people change employers.

While our baseline analysis focuses on coworkers networks, we complement its statistics

with those of other network types, namely, networks of neighbors and relatives. We construct

networks of neighbors for all adult citizens in the country leveraging data from the National

Registry and the Supreme Court of Elections. The data consist of o”cial records on the

residence of each citizen.18 Data on nationwide family networks is available from the National

Registry and makes it possible to reconstruct each person’s family tree.19 The data includes

individual identifiers that can be linked to SINPE. The same data source provides details on

individual demographics. Finally, we leverage data on corporate income tax returns from the

17It is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),
which is significantly below the Latin American average of 53.1% (ILO, 2002).

18Records include each person’s district of residence, with 488 total districts, and also include the voting
center which is closest to the citizen’s residence, with 2,059 centers in total. We leverage the latter to get a
more precise notion of a person’s neighborhood. See Méndez and Van Patten (2025) for further details.

19We find that the average number of first-degree, second-degree, and third-degree relatives is 6 (median
5), 8 (median 7), and 14 (median 11), respectively.
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Ministry of Finance for the universe of formal firms. The data contains typical balance sheet

variables since SINPE’s inception, and includes details on each firm’s sector and location.

Summary statistics on each type of network are reported in Table G1.

7.2 From Model to Data

As described in the previous section, we obtained (i) transaction-level data including informa-

tion on the senders and receivers who took part in each transaction since the app’s inception,

and (ii) individual-level data on networks from o”cial sources. Further, crucially, we can

link identifiers in (i) and (ii). We leverage this substantial data e!ort to construct measures

of networks (N) for each individual and to obtain individual-level measures of adoption at

the extensive and intensive margins. Figure G3 shows the di!usion path of the technology

for the median network.20

Our baseline analysis focuses on networks of coworkers—the network for which we can

more credibly identify network changes that are plausibly orthogonal to changes in app

usage. This will enable us to document evidence of selection (x) and cleanly identify ωn,

which governs the strength of the strategic complementarities and will be crucial for the

policy analysis and the estimation of the optimal subsidy. We will also emphasize changes

in the intensive margin of adoption, which can be mapped to our model, as particularly

informative for teasing out the role of strategic complementarities relative to other potential

drivers, such as learning.

7.2.1 Evidence of Selection at Entry

Through the lens of our model, early adopters—who started using the technology even when

the network was small—should be more intense users (with higher x). Consistent with

this notion, we document that early adopters have distinct characteristics as compared with

users who adopted later. For this exercise, and throughout the entire paper, we classify

an individual as an adopter starting from the time when she first used the app. First, as

shown in Figure 4, we find that early adopters have a higher average wage as compared with

individuals who adopted later (Panel (a)), and are on average more high-skill (Panel (b)).21

Early adopters are also younger, on average, than later adopters, as shown in Figure G5.

20We classify networks (i.e., neighborhoods, families, firms) according to their level of adoption. In partic-
ular, we calculate the share of individuals within a network who had adopted SINPE by December 2021, the
last period available in our data set. We then compute percentiles of this share across networks to generate
a distribution.

21We classify an occupation as high-skill if it requires education or training beyond a high-school diploma.
The dashed vertical line in each figure denotes the beginning of the pandemic, which just as in Figure G1
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Figure 4: Average Wage and Skill at the Time of Adoption
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(a) Wage (b) High Skill

Notes: Panel (a) shows the cross-sectional distribution of SINPE users’ monthly wages in USD. Panel (b) shows the cross-

sectional distribution of SINPE users’ skills. High skill users are those that are in an occupation that requires more than a high

school degree. Both panels show averages weighted by the number of transactions of each user. Both figures include a vertical

dashed line to mark the start of the COVID-19 pandemic (March 2020).

Second, we can more closely bring the model to the data by interpreting the flow benefit

of agents who adopt the technology as being proportional to how intensively they use SINPE.

Suppose SINPE users choose the intensity with which they use the app. Specifically, suppose

2t is the probability of a transaction per unit of time, maximizing the following expression:

2
↔
t
(xt, Nt) = argmax

⇁t

1 + p

p

[
1(xt, Nt)2t ↗

2
1+p

t

1 + p

]
,

where p > 0 so that the problem is convex and 1(xt, Nt) > 0. The first order condition

describes the optimal intensity with which the technology is used: 2↔
t
(xt, Nt) = 1(xt, Nt)1/p,

and we can choose the function 1(xt, Nt) such that the indirect utility function gives the

specified flow benefit, i.e:

[ω0 + ωnNt]xt = max
⇁t

1 + p

p

[
1(xt, Nt)2t ↗

2
1+p

t

1 + p

]
for all xt ↑ [0, U ] and Nt ↑ [0, 1]. (29)

The solution is given by 1(xt, Nt) = [(ω0 + ωnNt) xt]
p

p+1 ; combining this expression with the

first-order condition and taking logs with obtain:

ln 2↔
t
=

1

1 + p
ln [(ω0 + ωnNt)] +

1

1 + p
ln xt. (30)

did not have a major impact on overall trends.
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Given the discreteness of the number of transactions in the data, 2↔
t
is interpreted as the mean

of a Poisson distribution; transactions each period are drawn from a Poisson probability dis-

tribution with mean 2
↔
t
(i.e., Tt ↖ Poisson(2t)). Thus, if we were to remove the network⇑time

variation from the logarithm of the number of transactions, then they would proxy for ln xt,

as through the lens of the model only the idiosyncratic variation would remain. The model

also predicts that users with a higher x would adopt the technology earlier. Thus, we can

obtain a relation between intensity of usage (Tn
it
) and the share of user i’s network who had

adopted the technology at the time when she first used the app (Nn

i,entry
):

ln Tn
it
= ↼ + 3N

n

i,entry
+ 0

n

t
+ ϑ

n

it
,

where n ↑{neighbors, coworkers, relatives} and Tn
it
is defined as number of transactions of

user i each month t. Our model predicts that 3 < 0, as users who adopted the app (“entered”)

when the network was smaller should have a higher idiosyncratic taste for the app and use it

more intensively—note that the inclusion of the network-time fixed e!ect, 0n

t
, prevents this

relationship from being mechanical.

We estimate 3̂ to be ↗2.7 when defining a network as a neighborhood. This relationship

is shown in Column (1) of Table 1, and while suggestive, points to the presence of selection

at entry. The relation is also robust to defining networks using coworkers and relatives, as

shown in Columns (2) and (3) in Table 1. The relation also holds if, instead of the total

number of transactions, we consider the value of transactions as our dependent variable, as

reported in Table G3.

Table 1: Number of Transactions and Size of Network at Entry

Dependent variable: Number of Transactions (IHS)

(1) (2) (3)

Size of Coworkers’ Network at Entry -1.300***
(0.043)

Size of Neighbors’ Network at Entry -2.730***
(0.025)

Size of Family Network at Entry -1.181***
(0.006)

Observations 16,138,736 34,409,818 14,700,288
Network⇑Time/Cohort FE Yes Yes Yes
Adjusted R-squared 0.304 0.234 0.199

Notes: The dependent variable in this estimation is the number of transactions each month for each user transformed using
the inverse hyperbolic sine function. Coe!cients describe the e”ect of increasing the share of an individual’s network who had
adopted the app at the time when she used it for the first time. All regressions control for network size (in levels) and use data
from May 2015, when the technology launched, to December 2021. Standard errors, clustered by network, are in parenthesis.
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7.2.2 Estimating the Strength of the Strategic Complementarities

The core idea behind strategic complementarities is that usage benefits increase with the

size of a user’s network. Recall the expression in equation (30). Under this interpretation of

the model, the intensity with which the application is used, which is observable in the data

(e.g., number or value of transactions), is proportional in logs to the flow benefit of adopting

the application as described in the model. After taking the first order Taylor expansion of

ln(ω0 + ωnNt) around N
↔ and plugging it into equation (30), we obtain:

ln Tt ⇐
1

1 + p

(
ln(ω0 + ωnN

↔) +
ωn(Nt ↗N

↔)

ω0 + ωnN
↔ + ln xt

)
. (31)

Moreover, taking first di!erences, it follows that:

# ln Tt = 1#Nt + ϑt, (32)

where 1 ↓
1

1+p

ϑ

1+ϑN↑ , 4 ↓
ϖn

ϖ0
, and ϑt ↓

1
1+p

# ln xt. Further, if p ⇐ 0, then 4 = ⇀

1→N↑⇀ . Thus,

throughout all the tables in this section, we can evaluate N
↔ at its mean value to recover

4 from each 1; these are our coe”cients of interest since strategic complementarities in the

adoption of the technology exist if 1 > 0 ↙∝ 4 > 0 ↙∝ ω0 > 0 and ωn > 0. Note that

equation (32) is in di!erences, therefore, any individual or network characteristics which are

time invariant will cancel out.

With these expressions, one can first naively run an OLS specification. We do so in

Appendix G.4 and find a significant correlation between the intensity of app usage and

the share of individuals in the user’s network who have adopted it. This correlation remains

robust across various network definitions, usage intensity measures, and specifications. Then,

we show that the impact of network size on usage intensity persists even after employing a

leave-one-out instrument to address potential endogeneity concerns and measurement errors.

Additionally, this relationship is una!ected when accounting for selection through a balanced

panel of adopters. However, to quantify the model, one ultimately needs to take a stand on

the causal impact of changes in the number of adopters; we do so by focusing on mass layo!s.

Usage After a Mass Layo! (Intensive Margin of Adoption). This strategy focuses

on the network of coworkers and implements both (i) a mover design, where we follow workers

displaced during mass layo!s to examine the e!ect of network changes on the intensive and

extensive margins of adoption and (ii) an analysis of stayers, in which we instead focus on
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workers who remained at a firm after a mass layo!.22 The main hypothesis of the movers

exercise is that workers, who were displaced during a mass layo! and who ended up at firms

where a larger share of colleagues had SINPE (larger N), have more incentives to use the

app via the e!ect of strategic complementarities. Similarly, the idea behind the analysis of

stayers is that workers who remain at a firm that, for instance, laid o! most of its SINPE-

using employees (smaller N), have now less incentives to use the app.

We first analyze the impact of a mass layo! on movers’ usage. To do so, we focus on

workers who were fired during a mass layo! and consider only displaced workers who had

already adopted and had used SINPE at least once by the time they were fired. We then

examine how the intensity with which they use the app changes depending on the change in

the share of coworkers who had SINPE at their old and new firm. As explained before, it is

possible to derive the relationship in equation (58) from our theoretical model, which speaks

to the technology’s usage intensity. Thus, we consider:

# ln Ti =5 + 3#N
coworkers

i
+ ↼# lnwagei + ψ# ln sizei + ▷ date hiredi+

⇁#Covidi + ◁0ic + ϑ ln
move

t=0

Tti + ϑ

move

t=0

(ln Tt, new firm ↗ ln Tt, old firm) + ⇀i, (33)

where # ln Ti refers to the change in monthly intensity with which individual i used SINPE

within 6 months after arriving at her new firm compared with 6 months before being fired;

#N
coworkers

i
is the change between the share of coworkers who had adopted at the old and

the new employer; # lnwagei corresponds with the change in the average wage (in logs)

across 6 months before the layo! and after the rehiring; # ln sizei is the change in the

number of workers at each firm; date hiredi is a time fixed e!ect corresponding with the

month in which individual i was hired by the new firm; #Covidi controls for the change

in the cumulative COVID-19 cases (transformed using the inverse hyperbolic sine function)

in the individual’s neighborhood across the 6 months before the layo! and after the rehir-

ing; 0ic controls for cohort (i.e., the date when individual i adopted SINPE); ln


move

t=0 Ti

is the sum of all historical transactions made by agent i since she adopted the app, and


move

t=0 (ln Tt, new firm ↗ ln Tt, old firm) is the di!erence in the (log) historical transactions made

by workers at the new firm and the old firm up until the move occurred, which aims to control

for factors—other than strategic complementarities—which might facilitate adoption at the

new vs. the old firm.23

22To define a mass layo!, we follow Davis and Von Wachter (2011) and identify establishments with at least
50 workers that contracted their monthly employment by at least 30% and had a stable workforce before this
episode and did not recover in the following 12 months. Given we also analyze stayers, we implement a few
additional refinements. Details are provided in Appendix G.5.1.

23Results are robust to also including a dyadic interaction controlling for industry before and after the
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This is our preferred specification for several reasons. First, the results are likely not

driven by learning about the app since (i) workers had already adopted the app when they

were fired—and we define “adoption” as making at least one transaction—so they were at

least aware of the app’s existence and had used it before; (ii) we control for tenure in the

app (i.e., the cohort when the user adopted) and for the historical number of transactions in

the app, which as shown before correlate with observables like age, skill, and wage. These

variables aid in controlling for characteristics that are particularly relevant for intensity of

usage and are also useful to addressing learning to better use the app after adopting. Second,

of course, the choice of the new firm after a mass layo! is not exogenous, but this does not

pose a measurement problem as long as sorting is not (both): (i) stronger after a mass

layo!—note that there is no reason why this might be the case, especially as results hold

even when we focus on job-to-job transitions, where workers had little time to find a new job

after being fired exogenously—and (ii) not controlled for by the cohort of the mover, which

proxies for her idiosyncratic characteristics, and di!erence in the historical transactions at

the new vs. the old firm. The latter control, in particular, helps us rule out stories where,

for instance, workers select into firms where people use the app more intensively for reasons

other than strategic complementarities (like demographics or the internet speed at the firm).

Table 2: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layo!

Dependent Variable: # Number of transactions (IHS)

(a) Movers (b) Stayers
(1) (2) (3) (4) (5) (6)

#N
coworkers

i
2.646*** 1.406*** 1.283*** 3.284*** 0.952** 0.971**
(0.203) (0.268) (0.294) (0.237) (0.443) (0.435)

# lnwagei 0.383*** 0.385*** 0.203** 0.132
(0.070) (0.077) (0.087) (0.103)

#Covidi 0.168** 0.167*** -0.010 -0.012
(0.027) (0.032) (0.025) (0.024)

Observations 917 917 917 2,236 2,236 2,236
Time FE No Yes Yes No Yes Yes
Cohort FE/Historical T No No Yes No No Yes
Adjusted R-squared 0.153 0.244 0.262 0.093 0.122 0.184

Notes: The unit of observation is the individual. We run regressions using data on mass layo”s which occurred between May
2015, when the technology was introduced, until December 2021. While time and cohort fixed-e”ects’ inclusion varies across
columns, all other independent variables in equation (33) are present across columns. Standard errors are in parentheses.

Panel (a) of Table 2 displays our results using the number of transactions per user as our

move.
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dependent variable. Changes in the intensity of usage depend positively and significantly on

the change in the share of adopters at the old and new firm. Panel (a1) of Figure 5 displays

the marginal e!ect of these network changes following the specification described by Column

(2) of Table 2. As this panel shows, not only is the relationship between usage and network

changes positive, but also whenever a worker moves to a firm with a lower adoption rate, her

usage decreases (i.e., the change on the vertical axis is negative), a relationship that would

be hard to reconcile with a pure learning story.24

Column (3) controls for cohort, i.e., date of adoption, which aims to mitigate any e!ect

of more experienced users behaving di!erently than beginners. Column (3) also controls for

the total historical transactions made, which in a similar spirit as cohort, intends to mitigate

any e!ect resulting from learning how to use the app from others. Interestingly, as compared

with Column (3), adding these controls does not change the coe”cient of interest almost at

all. This result aligns with the following intuition: at the intensive margin—once users have

already adopted and used the app—a learning story is less plausible, as reflected by 3 not

changing after controlling for cohort and historical usage.

The analysis can be taken to an even more detailed level if, instead of considering all

transactions in the left-hand-side variable, we focus only on those which had a coworker as

a counterpart. This subsample allows us to better identify changes in usage intensity which

are a direct consequence of the arguably exogenous changes in the network of coworkers.

Reassuringly, results are remarkably similar to those using all transactions, as shown in

Panel (a2) of Figure 5.

A similar analysis can be conducted based on stayers. Namely, we focus on workers who

remain at a firm after it experienced a mass layo!. Their change in N will therefore depend

on how the composition of SINPE adopters changed after the mass layo!. We then consider

a regression similar to equation (33), except for the last regressor which would be zero in this

case.25 Results based on stayers are reported in Panel (b) of Table 2 and Panel of Figure 5.

Remarkably, although the movers design is based on a very di!erent sample than the analysis

based on stayers, the estimated coe”cients in our preferred specifications, in columns (3) and

(6) of Table 2, are statistically equal.

Adoption After a Mass Layo!. Lastly, we analyze changes in the extensive margin of

adoption. For movers, we consider the change in the probability of adoption for displaced

24The marginal e!ect considering the value of transactions as dependent variable, as opposed to the number
of transactions, is reported in Figure G7. We also report the distribution of network changes in Figure G8
and the absence of pretrends in Figure G9.

25An additional control equal to the change in the average wage at the workers’ firm delivers statistically
equal results, both for the intensive and extensive margin analyses.
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Figure 5: Marginal E!ect of Network Changes on Usage Intensity

(a) Movers

��
��

���
�

��
��
�

&
KD
QJ
H�
1
XP

EH
U�R
I�7
UD
QV
DF
WLR
QV
��D
VL
QK
�

��� ��� ��� � �� �� ��
&KDQJH�6KDUH�RI�$GRSWHUV��1�

��
��
��

�
��
�

�

&
KD
QJ
H�
9D

OX
H�
RI
�7
UD
QV
DF
WLR
QV

Z
LWK
LQ
�&
RZ

RU
NH
UV
��D
VL
QK
�

��� ��� ��� � �� �� ��
&KDQJH�6KDUH�RI�$GRSWHUV��1�

(a1) All transactions (a2) Transactions with coworkers only

(b) Stayers
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(b1) All transactions (b2) Transactions with coworkers only

Notes: Panel (a1) plots the marginal e”ect of #N
coworkers

i
in the specification described by Column (3) of Table 2, while

Panel (b1) plots the marginal e”ect of #N
coworkers

i
in the specification described by Column (6) of Table 2. Bars denote 95%

confidence intervals. The dependent variable in this estimation is the number of transactions (transformed using the inverse
hyperbolic sine function) on each period for each user. Panels (a2) and (b2) are similar, but di”er as the dependent variable
in these estimations is the number of transactions which have a coworker as a counterpart (transformed using the inverse
hyperbolic sine function) on each period for each user. Results are robust to winsorizing the top and bottom 5th percentiles of
the distribution of network changes.
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workers who had not adopted the app by the time they were rehired, and how it depends on

the change in the share of coworkers who had SINPE at their old and new firm. We consider:

Adopti =5 + 3#N
coworkers

i
+ ↼# lnwagei + ψ# ln sizei + ▷ date hiredi+

⇁#Covidi + ϑ

move

t=0

(ln Tt, new firm ↗ ln Tt, old firm) + ⇀i, (34)

where Adopti equals one if individual i adopted SINPE within 6 months after arriving at her

new firm, and zero otherwise. Other variables are defined in the same way as in equation (33).

For stayers, we instead consider the probability of adoption for workers who were not fired by

a firm which underwent a mass layo! and how it depends on the change in the composition

of workers who had SINPE, before and after the mass layo! took place. We then use a

regression similar to equation (34), except for the last regressor which would be zero.

Panels (a1) and (b1) of Figure 6 estimate equation (34) using a logit model. The marginal

e!ects of changes in network adoption are reported in brackets. The analysis of movers in

panel (a1) consistently finds that workers who, after a mass layo!, were hired by firms where

the rate of SINPE adoption was higher than their previous employer’s are more likely to adopt

SINPE than their counterparts who moved to firms where the change in their coworkers’ rate

of adoption was smaller. Reassuringly, panel (b1) also finds that workers who experienced

an increase in the share of adopters among their peers were more likely to adopt SINPE

themselves. The marginal e!ect of #N
coworkers

i
, under the specification described by Column

(3) in each table, is shown in panels (a2) and (b2). These marginal e!ects are monotonous

and, as expected, are present only when the change in the share of adopters is positive,

regardless of the subsample considered.
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Figure 6: Adoption Probability and Changes in Coworkers’ Network After a Mass Layo!

(a) Movers
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i 8.321*** 5.197*** 5.018***

(0.161) (0.207) (0.208)
[0.450] [0.376] [0.350]

” lnwagei 0.076 0.040
(0.055) (0.056)

”Covidi 0.097***
(0.026)

Observations 10,176 8,035 8,035
Time/Cohort FE No Yes Yes
Pseudo R2 0.507 0.529 0.530

(a1) Changes in Adoption Probability (a2) Marginal E!ect of Network Changes

(b) Stayers
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”N coworkers
i 11.249*** 6.489*** 6.418***

(0.172) (0.356) (0.357)
[0.716] [0.442] [0.437]

” lnwagei -0.104 -0.098
(0.089) (0.089)

”Covidi 0.037*
(0.020)

Observations 24,329 23,005 23,005
Time/Cohort FE No Yes Yes
Pseudo R2 0.330 0.356 0.357

(b1) Changes in Adoption Probability (b2) Marginal E!ect of Network Changes

Notes: Panels (a1) and (b1): The unit of observation is the individual. We run regressions using data on mass layo”s that
occurred between May 2015, when the technology was introduced, and December 2021. Standard errors are in parentheses.
Marginal e”ects for the main variable of interest are reported in brackets. Panels (a2) and (b2): The figures plot the marginal
e”ect of #N

coworkers

i
in the specification described by column (3) of panels (a1) and (b1), respectively, in this figure. Vertical

bars denote 95% confidence intervals.

8 Quantitative Performance and Optimal Subsidy

In this section, we calibrate the version of the model that incorporates learning, described

in Section 6, and evaluate its performance relative to SINPE data. The model with only

strategic complementarities assumes that all individuals are informed about the technology

at all times. However, according to the 2017 Survey of Payment Methods conducted by the

Central Bank of Costa Rica, only about 4% of adults reported knowing about SINPE Móvil
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more than two years after its launch. The model that incorporates learning helps align the

model with this fact and, as a result, with the smooth and relatively flat path of N(t) during

the first few years after launch shown in Figure 7. In what follows, we describe our calibration

procedure in detail.

Calibration. We interpret the flow benefit of agents who adopt the technology as being

proportional to how many transactions they conduct, and assuming a convex adjustment

cost (i.e., p > 0). U can be normalized without loss of generality (we use the normalization

U = 1), so the problem features seven independent parameters: ϑ, r, ωn, ω0, ε, p, and c. The

model with learning has an additional parameter, 10, and an initial condition for the informed

population, I(0).

The parameters ϑ, r, 10 and are calibrated externally. We set ϑ to 0.0278 to match the

rate at which agents stop using SINPE; namely, the average fraction of agents in 2019-2021

who had adopted SINPE but did not conduct a single transaction in the app within a year.

We use the last three years of the data, when the adoption rate is higher, to focus on periods

closer to a stationary equilibrium. We set the discount factor r to be consistent with a 5

percent annual interest rate. This value is a lower bound for r, which can admit higher values

if we assume agents expect new technologies to arrive in the future and replace SINPE. The

values of ϑ and r imply ϖ = r + ϑ = 0.0778. Lastly, we calibrate 10 and I(0) jointly to

match two observed moments of the information di!usion process.26 We use the expression

for the di!usion path (see Proposition 11) and set I(t1) = 0.0409 at t1 = 31 months (based

on the 2017 Survey of Payment Methods) and I(t2) = 0.9617 at t2 = 117 months (based on

a follow-up survey conducted by the Central Bank in 2025). This yields 10 ⇐ 1.0717 and

I(0) ⇐ 0.00287, implying that about 0.29% of workers were informed about SINPE Móvil at

the time of its launch.

The parameters ωn, ω0, ε, p are calibrated using simulated methods of moments (SMM).

Intuitively, we aim to choose parameters that make the model consistent with the distribution

of transactions in the data and the mass layo! exercise. To achieve this, in the data, we

focus on workers at firms active from 2019 to 2021 with more than 5 employees. We take

advantage of having closed form solutions for the steady state. Thus, we concentrate on firms

close to a stationary equilibrium, specifically those whose N (fraction of employees with the

app) changed by less than 0.1 percentage points in 2021. We then compute moments from

the empirical distribution of transactions over the years 2020-2021 and simulate the model,

replicating the same characteristics as our empirical sample. In addition, we simulate a

26Di!usion models typically impose a small seed value for the unobserved initial condition. Observing
two moments of the information di!usion path allows us to identify it jointly with the transmission rate.
Standard SIR applications assume I(0) = ϖN for small ϖ (e.g., Acemoglu et al., 2021; Alvarez et al., 2021).
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sample of firms that replicates the characteristics of those subject to a mass layo!. We do

this to run the same estimation, presented in Section 7.2.2, in the simulated data to obtain

information on the parameters governing the strength of the strategic complementarities. We

then choose the parameters that minimize the distance between the moments in the data and

the model. We provide more details of our strategy below.

Simulation. We begin by simulating the model for a monthly panel of agents. Our sim-

ulation takes as given the values of ϑ, r, and 10, since they are calibrated externally, and

Nss = 0.90, which is obtained from our sample of firms close to a stationary equilibrium.

Initial conditions x(0) are drawn from the stationary distribution of adopters. To find this

distribution, we first find x̄ss using the following equation:

Nss = (1↗ ϑ

⇀0
)

[
1↗ x̄ss

(
1↗

tanh(↼x̄ss)

↼x̄ss

)]
.

Then, given x̄ss, we find the distribution of adopters using the stationary distribution of

non-adopters:

m̃(x) = (1↗ ϑ

⇀0
)

(
1↗

cosh(↼x)

cosh(↼x̄ss)

)
where ↼ =

⇒

2ϑ/ε

using that Nss = Iss↗Mss and Iss = (1↗ ϑ

⇀0
). We simulate a panel of 5,000 individuals.27 In

the simulation, agents die at rate ϑ and they become inactive in the application just as in the

data. The process of x follows a Brownian motion, independent across agents, with variance

per unit of time ε, no drift, and reflecting barriers at x = 0 and x = 1. Since x is unobserved

and what is observed are transactions, as before, we interpret the flow benefit of agents who

adopt the technology as being proportional to how intensively they use SINPE. Thus, we

compute: 2t = [ω0(1 + 4Nss)xt]
1

1+p , where 4 ↓
ϖn

ϖ0
, to find the number of transactions Tt by

drawing them from a Poisson probability distribution Tt ↖ Poisson(2t).

Mass Layo!. We also simulate a panel of workers at firms with the same characteristics

as those experiencing mass layo!s in the data. Specifically, as presented in Table G12, we

simulate a sample of 292 firms with 94 employees each. We focus on workers who remain at a

firm after it has experienced a mass layo! (i.e., stayers).28 We then examine how the intensity

with which they use the app changes depending on the change in the share of coworkers who

had SINPE after a mass layo!. The change in N depends on how the composition of adopters

27Our estimates are not sensitive to simulating a larger sample of users.
28Table 2 shows that the estimated impact of a mass layo! on usage is statistically equal for movers and

stayers.
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changes after the mass layo!, which involves randomly choosing and removing a fraction of

workers from each firm undergoing a mass layo!. We choose the magnitude of these mass

layo!s to match the average size of these events in the data (i.e., 57%). We then run the same

regression that is implemented in Table 2. First, we calculate the number of transactions

before and after the mass layo! event. Then, we regress the change in monthly transactions

within six months of the mass layo! event on the change in the share of coworkers who had

adopted the app before and after the event. The estimated coe”cient is a moment that we

target in our calibration

Calibrated Moments. We target the following five moments: the mean number of trans-

actions, the median number of transactions, the absolute value of changes in transactions,

the coe”cient of the mass layo!s regression, and the autocorrelation of the number of trans-

actions. As done throughout the paper, all the targeted data moments are calculated after

controlling for COVID-19 cases. Parameters ωn, ω0, ε, and p are chosen to minimize the sum

of the norms of the percent deviations of simulated moments from target moments.29 Table 3

reports the empirical and simulated moments.30

Table 3: Moments: Distribution of Transactions

Parameter Value Std. Dev. Moment Data Model
ω 0.032 0.002 Mean Number of Transactions 6.88 6.84
ε0 26.32 4.726 Median Number of Transactions 6.08 6.64
p 0.0059 0.0009 Absolute Value Changes in Transactions 3.48 2.76
ϱ ↓

ωn
ω0

5.722 0.343 Coe#cient Mass Layo!s Regression 0.97 0.96
Autocorrelation of Transactions 0.97 0.95

Intuitively, the mean and median number of transactions provide information about ω0

and p, as shown by equation (30). The dispersion in the changes of transactions and the

autocorrelation of transaction provide relevant information to pin down ε; a lower variance

decreases the absolute value of the changes in transactions but increases the autocorrelation

coe”cient. Lastly, equation (32) shows that the coe”cient of the mass layo!s regression

informs the estimation of ωn.31 Targeting this moment allows us to leverage the rich vari-

29This is, min
5

i ς(i)
|Model(i)→Data(i)|

Data(i) , where Model(i) is a simulated i-th moment and Data(i) is a target
value of i-th moment. We assign half of the weight to each of the mean and median of transactions since they
provide similar information for the calibration. We assign twice as much weight to the coe#cient of the mass
layo! regression, as this moment provides information about the strength of the strategic complementarities.

30We simulate the model 200 times and use the average values of the moments from the simulated data.
In the model and the data, we calculate the autocorrelation of the average transactions over two years to
minimize the impact of measurement error in the autocorrelation coe#cient. The standard deviation of the
parameters is obtained from the the SMM variance-covariance matrix, which is obtained from calculating the
derivative of the criterion function with respect to each parameter.

31The learning model in Appendix E cannot capture the patterns observed after mass layo!s, as it features
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ation across networks to inform the model estimation. Importantly, by running the same

regression in both the data and the model, we do not rely on approximating the relationship

between the change in transactions and the change in the share of users who have adopted

the technology around the stationary equilibrium to obtain information about 4, as done in

equation (32). Overall, Table 3 shows that the model is quantitatively consistent with the

empirical distribution of transactions.32

Cost of Adopting. Lastly, the adoption cost, c, can be obtained from the solution of

the stationary problem for adoption, given a value of x̄ss and the parameters ωn, ω0, ε. In

particular, we use the following equation:33

c = ω̄ss

[
x̄ss + Ā1e

ςx̄ss + Ā2e
→ςx̄ss ↗

(
1

φ

e
ςx̄ss + e

→ςx̄ss

eςx̄ss ↗ e→ςx̄ss

)
1 + φĀ1e

ςx̄ss ↗ φĀ2e
→ςx̄ss

]

where φ =
⇒
2ϖ/ε, Ā1 = 1

ς

(1→e
→ω)

(e→ω→eω) , Ā2 = 1
ς

(1→e
ω)

(e→ω→eω) and ω̄ss ↓
ϖ0+ϖnNss

ω
. The calibrated

parameters imply an adoption cost of c = 10.54 · ω0, which rationalizes the observed steady-

state adoption level Nss. Importantly, our procedure does not assume a unique interior

steady state—only that the economy is observed at a steady state. The calibration relies

entirely on aggregation and the statistical properties of the unobservable state variable x and

transactions, without using agents’ optimality. As a result, parameters are estimated via the

method of moments, and the adoption cost c is then computed using the firm’s first-order

condition to ensure consistency with the steady state.

Results. Using the estimated parameters, we simulate the dynamic model to obtain the

adoption path predicted by the model. Panel (a) of Figure 7 compares the path of adoption in

the model and in the data. The solid red line indicates the di!usion of the technology in the

median firm and the dashed lines represent the 10th and 90th percentiles after controlling for

COVID-19 cases.34 The figure shows that both the speed and the level of adoption generated

by the model are consistent with those in the data. Panel (b) shows the path of I(t), N(t)

and x̄(t). The path of I(t) shows that most people are informed about the technology within

the first 7 years; in the stationary distribution, approximately 97.4% (i.e., Iss = 1↗ ϑ

⇀0
) of the

population knows about the application and 89% of the workers the median firm adopt the

random di!usion of the technology. Consequently, after adoption, an agent’s flow benefit does not depend
on the network size N (i.e., εn = 0).

32A sensitivity analysis of the relevant parameters can be found in Appendix H.
33All details on the derivation of this equation can be found in Appendix A.1.
34We adjust the adoption path in the data to control for the pandemic. To do so, we estimate the impact

of COVID-19 cases on the number of new users and subtract the predicted number of pandemic-driven new
users from the cumulative number of users.
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application as shown by the path of N(t). Importantly, the declining path of x̄(t) indicates

that, consistent with our empirical evidence, the model features selection: agents that benefit

the most from the technology adopt first. This contrasts with the model that features only

learning, which shows no selection in the adoption of the technology.35

Figure 7: Path of Adopters (Short-Run and Long-Run)

(a) Model vs Data (b) Long-Run Path

(c) Comparative Statics: Nss (d) Comparative Statics: x̄ss

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the patterns of di”usion
of the technology in the median firm, where the percentile is calculated in the last period of the sample using the share of
individuals that had adopted the technology. The dashed red lines show the 10th and 90th percentiles. Panel (b) shows the
share of informed agents, I(t), the share of adopters, N(t), and the levels of x̄(t) predicted by the model under our baseline
calibration. Panel (c) and (d) show how Nss and x̄ss change with ϑ and ϱ, keeping the rest of the parameters constant. The
black diamonds indicate the levels of ϑ and ϱ in our baseline calibration.

Panels (c) and (d) of Figure 7 display the values of Nss and x̄ss in the stationary equi-

librium as we vary 4 and ε, while holding others constant. These panels illustrate the

35Appendix H.3 presents a version of the model without strategic complementarities and only learning
(i.e., ϱ = 0). In this case, the path of x̄(t) is completely flat. Figure H7 shows the paths of N(t) and x̄(t) for
di!erent speeds of information di!usion; namely, di!erent values of φ0. It shows that selection occurs in the
model even when the speed of information di!usion is very high.
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comparative statics of the stationary equilibrium derived in Section 3.4. Panel (c) shows

how the stationary level of adoption changes with 4 and ε (a black diamond denotes Nss’s

level in the baseline calibration). As 4 increases, so does the strength of the strategic com-

plementarities, and not surprisingly, Nss increases as 4 rises. The e!ect of ε is more subtle

and results from two opposing forces. On the one hand, higher ε decreases Nss since agents

have a higher option value of waiting to adopt. On the other hand, higher ε increases Nss,

since it implies a smaller density of non-adopters below x̄ss. In our calibration the latter

e!ect dominates and Nss increases with ε. Panel (d) displays a similar exercise for x̄ss. It

shows that strategic complementarities 4 play an important role in decreasing the adoption

threshold. Moreover, given 4, a higher ε increases x̄ss

Variation Across Networks. The model is consistent with both high and low adoption

networks of firms, each implying a di!erent path of adopters in equilibrium. Specifically, we

calibrate the model by targeting moments from individuals at firms whose level of adoption

is either above the median (high adoption) or below the median (low adoption).36 We target

the same data moments computed for di!erent samples of workers, specifically those working

at firms whose average level of adoption is either above the median, Nhigh

ss
= 0.95, or below

the median, N low

ss
= 0.73, and we assume the same coe”cient for the mass layo!s regressions

in both calibrations. We estimate a higher level of strategic complementarities (i.e., higher 4)

in networks with high adoption and a higher convexity in the cost of conducting transactions

in low adoption networks (i.e., higher p). Panel (a) of Figure 8 shows the path of adopters

in the two calibrated networks (high and low adoption) relative to the data, indicating that

these calibrated versions of the model are consistent with the 10th and 90th percentiles of

adoption in the data. Panel (b) show the path of x̄(t), which indicates the strength of the

strategic complementarities in each of the calibrated networks. In the high adoption network,

96% of the population adopts the application. In the low adoption network, only 73% of the

population adopts in the stationary equilibrium.

Optimal Subsidy. Panel (a) of Figure 9 shows the optimal adoption path in the model

with complementarities (blue line) relative to the high-adoption equilibrium (black line).

During the first three years after the launch of the technology, the optimal level of adoption

is similar to that of the equilibrium without subsidy. Afterward, the optimal path of adopters

from the planning problem is higher. In fact, by the beginning of 2020, it is equal to the total

number of informed agents in the economy—over 12 percentage points higher than the levels

of adoption observed in the data—and by the end of 2021, it is over 15 percentage points

36The details of the calibration can be found in Appendix H.2.
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Figure 8: Variation Across Networks: Path of Adopters

(a) Model vs Data (b) Path of x̄(t)

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the di”usion patterns
of the technology in the median firm, and the solid black line shows the di”usion patterns in the benchmark calibration of the
model. The dashed red lines indicate the 10th and 90th percentiles of adoption in the data. The solid magenta line shows
the path of adopters in the model calibrated for high adoption, and the solid blue line shows the path of adopters in the low
adoption calibration. Panel (d) shows the levels of x̄(t) under each of the calibrations, respectively.

higher. Panel (b) shows the path of the optimal subsidy.37 As the share of adopters increases,

so does the externality. Thus, the optimal subsidy, which is the same across agents, increases

over time. To see why, notice the optimal flow subsidy in equation (28) can be written as

ωnZ(t) = ωnN(t)⇑ E(x|adopted),

where the expectation over x is taken over the set of agents that have adopted the technology

(see Theorem 3). The first term ωnN captures the size of the adoption externality, i.e., the

additional benefits for agents that adopt the technology. Thus, the subsidy increases as

more agents adopt. Conversely, E(x|adopted) decreases as more agents adopt, since the

marginal adopter has lower idiosyncratic benefits from adopting the technology. Intuitively,

the planner internalizes that subsidizing agents with low x also benefits the rest of the agents,

even if the subsidy to incentivize these agents to adopt is large. The first component of the

optimal subsidy dominates and eventually pushes the economy to universal adoption. The

optimal subsidy contrasts with that of a pure learning model, which is constrained e”cient

and where the optimal subsidy to adopt the technology is zero. Importantly, the planner is

also constrained by the share of people who are informed ; otherwise, while the subsidy would

still be increasing and the same across agents, there would be a “jump” in the subsidy level

37Figure 9 shows the subsidy εnZ(t) as a ratio of the net flow benefits (i.e., (ε0 + εnN(t))E(x|adopted)).
In the invariant distribution, the subsidy-to-benefit ratio is approximately 0.84.
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Figure 9: Planning Problem: Solution and Optimal Subsidy

(a) Optimal Path of Adopters (b) Optimal Subsidy

(c) Multiplicity: High Cost (d) No Multiplicity: Low Cost

Notes: Panel (a) shows the share of informed agents, I(t), the share of adopters, N(t), and the optimal levels of adoption,
N(t) (optimal), according to the solution of the planning problem. Panel (b) shows the path of the ratio between the optimal
subsidy ϖnZ(t) and the flow benefit of the average adopter, Z(t)(ϖ0 + ϖnN(t)). Panel (c) shows the share of informed agents,
I(t), the share of adopters, N(t), and the optimal levels of adoption, N(t) (optimal), according to the solution of the planning
problem for a high adoption cost and 70% of the population informed 7 months after the launch of the technology. Panel (b)
shows the same variables for a lower adoption cost and 70% of the population informed 7 months after the initial launch. The
initial distribution in both panels is m0(t) = 1/U .

as soon as the application is launched, as depicted in panel (b) of Figure 3.38

In Appendix H.2 we estimate the model using variation across di!erent networks. Our

findings indicate that the model aligns with both high and low adoption networks of firms,

each implying di!erent paths of adopters in equilibrium and di!erent optimal adoption paths

in the planning problem. Consistent with our benchmark calibration, all versions of the model

show that the optimal subsidy pushes the economy toward universal adoption. Figure H6

shows that only for lower levels of 4 does the planner prescribe lower adoption levels.

38Figure H8 shows the optimal adoption paths and the respective subsidy-to-benefit ratios for di!erent
speeds of information di!usion.
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Multiplicity. Our model can be used to study economies with higher adoption costs fea-

turing multiple equilibria. We consider an economy with higher adoption cost c and higher

fraction of the population informed about the technology at launch. This example is mo-

tivated by a recent experience in El Salvador, where 70% of the population knew about a

payment app introduced by the government (i.e., Chivo Wallet) 7 months after its initial

launch.39 Panel (c) shows the possible paths of adopters N(t) for this economy. It shows

that, when the adoption cost is larger (in this case 15% higher than in Costa Rica), the

low-adoption equilibrium where nobody adopts the technology is not ruled out; for the same

initial conditions, there is an equilibrium with high adoption and one with no adoption.

Panel (d) shows the same paths for a lower adoption cost. Our model allows for the study

and quantification of policies that eliminate the no-adoption equilibrium even if the optimal

subsidy is not implemented. In this case, a large enough permanent subsidy can lower the

adoption cost, solve the coordination failure, and send the economy to the high adoption

equilibrium, i.e., from Panel (c) to (d).40

9 Conclusion

Understanding the adoption process of a technology and the transition from low to high

adoption is challenging, especially in the presence of strategic complementarities. This paper

develops a new dynamic model of technology adoption that allows us to model this transition.

The model provides a framework to generate gradual adoption through a novel mechanism—

waiting for others to adopt—and allows us to derive predictions that can be tested empirically.

We solve for the social planner’s problem. The planner in our setup controls the entire

distribution of adopters across time. The presence of strategic complementarities enriches

the problem and allows us to link our results to the “big push” literature, as they imply that

small subsidies can lead to large changes in adoption given the multiplicity of equilibria. In

our framework, the optimal subsidy increases over time but it is flat across people, thus, easily

implementable. The methodology we develop can be useful for a wide set of multidimensional

dynamic problems, and can be applied to the study of any technology that features strategic

complementarities, learning, or both.

Our application analyzes new electronic methods of payment, which are particularly rel-

evant today and are undergoing a digital transformation. This revolution has been echoed

39The app allows users to digitally trade both bitcoin and dollars.
40The Salvadorean government did in fact implement a similar subsidy. As an incentive to adopt, citizens

who downloaded Chivo Wallet received a $30 bitcoin bonus from the government. Our model suggests that
the subsidy was not large enough to rule-out the no-adoption equilibrium given the low levels of adoption of
Chivo Wallet reported by Alvarez, Argente and Van Patten (2022).
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by a growing interest from monetary authorities to promote and develop digital payment

platforms, both in developed and developing countries. Using individual- and transaction-

level data on SINPE, a national electronic payment system adopted by a large fraction of

the adult population in Costa Rica, along with extensive data on the networks of each user,

we document that strategic complementarities play an important role in the adoption of this

technology. SINPE also provides a rich environment to calibrate the model, which allows

us to estimate the optimal time-varying adoption subsidy and the degree of selection into

adoption across time. These results have implications for the launch and implementation of

payment technologies with similar features such as CBDCs.
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