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Abstract

We develop a dynamic model of technology adoption featuring strategic complemen-
tarities: the benefits of the technology increase with the number of adopters. We
show that complementarities give rise to gradual adoption, multiple equilibria, multi-
ple steady states, and suboptimal allocations. We study the planner’s problem and
its implementation through adoption subsidies. We apply the theory to SINPE Mévil,
a peer-to-peer payment app developed by the Central Bank of Costa Rica. Using
transaction-level data and user-specific networks that we construct from administrative
records, we causally estimate sizable complementarities. In our calibrated model, the
optimal subsidy pushes the economy to universal adoption.
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1 Introduction

We study the diffusion of a new technology in an economy characterized by strategic comple-
mentarities. These complementarities occur because the benefits that agents derive from the
technology increase with the number of users —a phenomenon long recognized in the applied
literature on technology diffusion (see Griliches (1957); Mansfield (1961)). Progress in this
research area is hindered by the challenges that arise when modeling adoption dynamically
—a large state space, non-linear decisions, multiple equilibria—, and by the lack of detailed
data on technology diffusion. We develop a new tractable model of technology adoption and
apply it to the diffusion of a new payment app, SINPE Movil, a digital application created
by the Central Bank of Costa Rica that allows instantaneous P2P transfers between bank
account holders in the network.! By its nature, the usefulness on this app depends on others
joining the network. We aim to quantify the value of this complementarity using granular
data from SINPE and other sources. We use the model to discuss equilibrium existence,
multiplicity of equilibrium paths, multiplicity of stationary equilibria, and the local stability
of stationary equilibria (see e.g., Matsuyama (1991)). We characterize the planner’s prob-
lem and its implementation through subsidies, and use a calibrated version of the model to
analyze the optimal policy.

The model assumes that the benefits of the technology at time ¢ depend on the number
of agents who have adopted it, N(¢), and on an idiosyncratic persistent random component,
z(t). In particular, we assume that the flow benefit of the app is proportional to the product
between these variables, x(t)N(t), so that an agent is more likely to adopt if her private
needs for it are high (a high x) and/or when more agents use the app (higher N). A
single parameter, controlling the intensity of this interaction effect, measures the strength of
the strategic complementarities. A high value of = also implies that an agent will use the
technology more intensively, a feature that we leverage when calibrating the model to the
data where we observe both adoption as well as the intensity of usage. Adoption entails a
fixed (once and for all) cost and agents choose when to adopt taking the aggregate path of
adoption as given. We show that when the idiosyncratic benefits are random the equilibrium
features gradual adoption through a simple mechanism: agents wait for others to adopt.
The optimal adoption rule is given by a time-dependent threshold value, denoted by Z(t),
such that adoption is optimal if z(¢) > Z(t). We assume that the economy starts with

an (arbitrary) measure of agents endowed with the technology, which serves as the initial

! Although the app is called “SINPE Mévil,” throughout we will be referring to it only as “SINPE,”
which stands for Costa Rica’s National Electronic Payment System (by its initials in Spanish). The app was
launched in May 2015 and over 60% of the adult population used it in 2021, with about 10% of the country’s
GDP transacted via SINPE. See Bjorkegren (2018) for a related network-goods analysis using data on mobile
phones adoption in Rwanda.



condition of the equilibrium. Aggregation of the adoption decisions across agents yields a
path for the fraction of agents that use the technology at each time ¢, N(¢). Given the initial
and terminal conditions, the equilibrium has a classic fixed point structure: the optimal
decision path (Z) depends on the aggregate path (N), and vice-versa.

The model yields three main results, each summarized by a theorem. We show that the
optimal adoption rule for each agent, summarized by the threshold path Z, is a decreasing
functional of the path of adoption N. The strength of this effect depends on the parameter
that controls the strategic complementarity. Likewise, we show that the adoption path N is a
decreasing functional of the path z, for any initial distribution of adopters. An equilibrium is
a fixed point given by the composition of these two functionals. The first theorem establishes
the existence, and possibly the multiplicity, of dynamic equilibria. These equilibria form
a non empty lattice, i.e., they are ordered so that there is a “largest one,” N, and a
“smallest” one, N*. The adoption path of the largest equilibrium is above the smallest one
at every point in time, N (t) > N%(t), for all t. More equilibria may exist and are bracketed
between these ones (the paths of different equilibria do not cross). We establish these results
using the monotone comparative statics logic by Milgrom and Shannon (1994), and Tarski’s
fixed point theorem. We show that there is a critical mass of adopters Ny such that, if the
initial measure of adopters is below Ny, there exists an equilibrium where no one will adopt
eventually. We also study stationary equilibria, i.e., equilibria where N is constant through
time, and show that, besides the stationary equilibrium with no adoption, the model may
feature two additional interior stationary equilibria, with low- and high-adoption.

We find two types of multiple dynamic equilibria for a fixed initial condition. A first
kind, which we denote as “delayed adoption”, is a family of equilibria where the path of the
endogenous variables is time-shifted. These equilibria differ in the length of the initial period
with no adoption. The second kind is one where the equilibrium either converges to the high
adoption or to the no adoption. We discuss the initial conditions and parameter conditions
under which each case occurs.

The second theorem characterizes the stability of the stationary equilibria by means
of a perturbation analysis with respect to the initial condition, assumed to be one of the
two interior equilibria. The analysis is non-trivial because it involves the linearization of
an infinite dimensional system: the distribution of adopters. We handle the problem by
leveraging techniques from the Mean Field Game (MFG) literature (e.g., Alvarez et al.,
2023a; Auclert et al., 2022; Bilal, 2023), which determines the local stability by inspecting
the eigenvalues of a linear operator. One novelty compared to the MFG problem studied
in Alvarez et al. (2023a) is the possibility of multiple stationary equilibria. The stability
condition then depends on the particular equilibrium that is chosen. We find that the high-



adoption equilibrium is locally stable, while the low-adoption is unstable, a feature that leads
us to discard it from the analysis.

Equilibria are socially inefficient because agents do not internalize the fact that when they
adopt they benefit all agents who already have the technology. We show how to characterize
efficient allocations by solving a planner’s problem which takes into account the dynamics
across the entire network. The third theorem shows how to decentralize the planner’s solution
using a simple tool: a time-varying subsidy paid to those that use the technology.

We then leverage comprehensive data collected since SINPE was created to analyze the
dynamics of adoption and usage, to document the presence of strategic complementarities,
and to discipline the parametrization of the model. Our baseline analysis links data on
users—both receivers and senders—within their employer-employee network.? We identify
the presence of strategic complementarities using arguably exogenous variation in the network
size due to mass layoffs. We document a causal relation between the share of agents who
have adopted (N) and usage of the app, both at the extensive margin as well as at the
intensive margin: a sudden decrease of the network size lowers the probability of adoption
and lowers the intensity of use.® This effect persists across a battery of ways to define usage
and networks. It also emerges after using a leave-one-out instrument and following a balanced
panel of adopters to address concerns regarding selection.

We match the theory with the data in a quantitative analysis where we calibrate the
model using key moments from the data with the objective to compute the optimal adoption
subsidy. To capture the initial gradual diffusion of the technology, observed in each network,
we supplement the model with a layer of slow-information diffusion following the seminal
work of Bass (1969). The strength of the strategic complementarities is chosen using the
information retrieved from the mass layoffs described above. The calibrated model shows that
the optimal subsidy speeds up adoption by the agents and ultimately pushes the economy

towards universal adoption of the payment app.

Related Literature. Several recent studies are related to our paper. Benhabib et al.
(2021) model firms that can endogenously innovate and adopt a technology. They analyze
the effect of these choices on productivity and balanced growth, but without conducting an

analysis of the transition between stationary distributions; likewise, Buera et al. (2021) study

2Individual-to-individual transactions account for over 95% of all transactions, regardless of the time
period considered. We find that 44% of all SINPE transactions occur between coworkers. Family networks
and spatial “neighborhood” networks are also considered for robustness.

3Namely, we focus on networks of coworkers and examine the effect of network changes on the intensity
of the app’s usage and its adoption for workers displaced by a mass layoff. By analyzing the usage intensity
of workers who had already adopted the app prior to being displaced, we are able to isolate the influence of
strategic complementarities rather than the effects of learning.



policies that can coordinate technology adoption across firms. A closely related contribution
is Crouzet et al. (2023), who develop a model with a unique equilibrium where the rate of
adoption of electronic payment by retailers increases following an aggregate shock. Their
analysis is motivated by 2016 Indian Demonetization, and exploits the variation in the inten-
sity with which firms in Indian districts were exposed to the shock to examine the adoption
of retailers. Unlike our model, which has heterogeneous agents and generates dynamics and
gradual adoption endogenously (as agents wait for others to adopt before doing so), their
model features homogeneous agents and a sluggish adjustment a la Calvo (1983), generating
gradual adoption through this imposed friction. Moreover, the heterogeneity in our model
allows us to accommodate, not only aggregate shocks when we analyze transition dynamics
in closed-form, but also dynamics after shocks that target particular types of agents; for
instance, we compare the propagation after “giving the app” to people with high vs. low
idiosyncratic benefits, which in turn can be mapped to observables like wages and skills.

The paper also deals with technical issues of multiplicity and stability that have plagued
the economic geography and trade literatures. Recent papers have developed algorithms that
exploit the super- or sub-modularity of the objective function based on Tarski’s theorem
(Jia, 2008; Arkolakis et al., 2023; Alfaro-Urena et al., 2023). Our approach also leverages the
monotonicity of our problem, but does so for an analysis of dynamic stability as a criterion
to select an equilibrium and develops the planning problem to study efficiency.

The paper is organized as follows. The next section presents the model, Section 3 discusses
different types of equilibria that may arise. Section 4 uses a perturbation method to inspect
the stability of the stationary equilibria. Section 5 discusses the planning problem. Section 6
adds an information diffusion mechanism to the baseline model. Section 7 presents the data
and documents the non-negligible role of strategic complementarities in the adoption and
use of SINPE. A calibrated version of the model is used in Section 8 to discuss the optimal
subsidy for the efficient adoption of SINPE.

2 The Model

This section presents a tractable model of technology adoption within a “network” of agents.
The model fits alternative notions of network, later discussed in the empirical analysis, such
as a group of co-workers, households living in the same neighborhood, or a (broad) notion
of family members. The network is populated by a continuum of agents who differ in the
potential benefits from adopting the technology. Let N(t) € [0, 1] be the fraction of agents
who have adopted at time ¢ € [0, 7. The flow benefit at time ¢ for an agent who has already



adopted the technology is
(00 + 0, N (1)) (1)

where 6,0, > 0 are parameters, x is a stochastic process, independent across agents, with
variance o2 per unit of time, no drift, and reflecting barriers at x = 0 and = U, so that
dr = odW where W is a standardized Brownian motion. Later we provide a derivation of this
equation, as the indirect utility benefit arising from the optimal intensity of technology use
in each period, see equation (29). We let ¢ > 0 be the fixed cost of adopting the technology
and r > 0 be the time discount rate. With probability v per unit of time agents die, so that
agents discount time at rate p = r 4+ v. Dead agents are replaced by newborns without the
technology and an x drawn from the invariant density f(z) = 1/U for z € [0, U], where f is

uniform because of the reflecting barriers.

2.1 Individual Decisions, Aggregation, Equilibrium

We next describe the agent’s optimal decision as a function of the whole path of aggregate
adoption N : [0,T] — [0, 1], discuss how to aggregate individual decision to compute the
aggregate path of adoption, and define the equilibrium.

Let a(z,t) be the value function of an agent who has adopted the technology and has

state x at time ¢:
alz,t) = E[ /t g (6 + 0N (s)) 2(s)ds + e T Dap(z) ) (1) = :1:] (2)

for all ¢ > 0 and = € [0,U]. The agent takes the whole path N as given. For finite 7" we
assume that ar(x) = (6 +0nﬁ)E[fTOO e Py (s)ds ‘ x(T) = x}, where n € [0,1]. The
interpretation of ar is the value of adopting when the fraction of adopters is a given constant
n.

An agent with state x, who has not yet adopted at time ¢, has a value function v(z,t)
that solves the stopping-time problem

v(@, 1) = maxE [ (a (2 (7),7) ~ ) [a(t) = 2] (3)

where 7 denotes the time of the adoption and depends only on the information generated by
the process for x and on calendar time ¢ (the latter because of the dynamics of N (t)).

We will use the convention that for 7" = oo then the set [0, co] over which the functions

of interest are defined shall be interpreted as [0, 00).



Discretized Model. = We consider a discretized version of the model where time is discrete,
at intervals of length A;, and the state x is discrete in intervals of length A,. The reflecting
Brownian Motion, Poisson processes, and discounting are changed accordingly, following the
scheme used in finite difference approximations, see Definition 3 in Appendix B for a detailed
definition. For small A;, A,, the discretized model converges to the decision problem in
continuous time. The advantage of the discretized model is that we can compute numerical
solutions for the equilibrium path for the case of T finite. Instead, the advantage of the
continuous time model is that it is easier to characterize stationary solutions as well as
perturbations.

Next we state a preliminary result to establish that we can represent the optimal adoption

rule at time ¢ as a threshold rule, z(¢).

LEMMA 1. Fix a path N and a time ¢t € [0, T]. If it is optimal to adopt at (z1,t), then it is
also optimal to adopt at (z9,t) where xo > x1. This holds for the continuous time as well as

for the discretized model.

For finite T define
Dr(z) = ar(x) —v(z,T)

further discussed in Section 2.2. The function X denotes the path for the optimal threshold
as: © = X(N;Dr), so that z : [0,7] — [0,U]. It is immediate from equation (2) and
equation (3) that what matters for the optimal adoption decision is Dy (z), which is the

reason why we include Dy as an argument of X.

Aggregation. Given the individual decision rule we can compute the implied path for
the fraction of adopters, N. We start by defining the probability that an agent at s with
state z(s) = x survives until time ¢, while the value of her state remains below Z during this

period:

P(z,s,t;2) = Pr|x(t) < z(1), for all v € [s,1] ‘ z(s) = x] e vt (4)

For an agent who at time s has = < Z(s), the value of P(x, s, ;%) gives the probability that
the agent will survive up to t without adopting. Let mq(x) be the density of the agents at time
t = 0 without the technology. Given the assumption about z, we require 0 < mg(z) < 1/U
for all x € [0, U]. The fraction of agents who have adopted the technology at time ¢ is

N(t)zl—/OUP(x,O,t;f)mo(x)da:—/oty [/OUP(x,s,t;gz%dx ds. (5)



The second term on the right hand side is the fraction of agents who did not have the
technology at time 0 and survived until time ¢ without adopting. The third term considers
the cohorts of agents that are born between 0 and ¢, and for each of these cohorts computes
the fraction that survived without adopting up to t. We note that an equivalent version of
equation (5) holds in the discretized version of the model, which for a given Z is simply a
matrix manipulation. We let NV/(Z;mg) be the path of N as a function of T (the path of the

adoption threshold) and of the initial condition my.

Equilibrium.  The equilibrium is given by the fixed point between the forward looking
optimal adoption decision, encoded in &X', and the backward looking aggregation, encoded
in A/. To emphasize the forward looking nature of X, note that it depends on the terminal
value function Dy. To emphasize the backward looking nature of N, note that it propagates

the initial condition mg. We then have the following definition.

DEFINITION 1. Fix an initial condition mg and a terminal value function D7. An equilibrium
{N*,z*} solves the fixed point:

N*=F (N*;mqg, Dy) where F (N;mg, Dy) =N (X (N; Dr);mo) (6)

and where 7* = X (N*; Dr).

Note that this is a canonical definition of equilibrium, where the operator F combines the
two operators N and X defined before. This definition holds for both the continuous time

and the discretized version of the model.

2.2 A Recursive Formulation of the Equilibrium

This section derives a recursive representation of the equilibrium that will be useful to study
the local stability of the equilibrium and to study the planning problem. To derive the
recursive representation we first consider a simple stopping time problem that combines

a(x,t) and v(x,t) into a single equation. We consider the value function

D(z,t) = min E[ / e "D (g + 0,N(s)) z(s)ds + e P Ve
t

T>t

x(t) = x] (7)

with terminal condition D(x,T) = Dy (x). The interpretation is that D(x,t) is the optimal
cost of adoption which is made of the flow-opportunity cost until adoption takes place (at
7), plus the actual discounted value of the adoption cost ¢. The function D(z,t) is related
to a and v by D(z,t) = a(z,t) — v(x,t). Note that a(z,t) — ¢ is the net value of adopting



immediately while v(x,t) is the net optimal value, that may entail adopting in the future
(see equation (2) and equation (3)).

Under differentiability assumptions on D(x,t) we can rewrite equation (7) as a Hamilton-
Jacobi-Bellman (HJB) partial differential equation with boundaries, derived in Appendix F,

which satisfies:
0.2
pD(a,t) = min {pe , a0+ 0N (1)) + T Dol t) + Dula, 1)} (8)

for all x € [0,U], t € [0,T] and terminal condition D(x,T) = Dr(z). Optimality requires
that D(z,t) < ¢, which yields the value matching condition at the barrier. We are looking

for a classical solution that satisfies:

pD(x,t) = 20y + 0,N () + %sz(x, t) + Dy(x,1) 9)

for all z € [0,Z(¢)] and ¢ € [0,T] with boundary conditions:

D(z(t),t) =c Value Matching
D.(z(t),t) =0 Smooth Pasting (10)
D,(0,t) =0 Reflecting

If the solution is regular it also features smooth pasting. Finally, since x = 0 is a reflecting
barrier, the value function has a zero derivative at that point.
Let m(x,t) denote the density of the agents with x that have not adopted at t. The law

of motion of m for all t > 0 is:

1 2
my(z,t) =v <U - m(x,t)) + %mm(ac,t) if 0 <z <z(t)

for x € [z(t), U] (11)

and initial condition mg(x) = m(z,0) for all x € (0,U). The p.d.e. is the standard Kol-
mogorov forward equation (KFE). The density of non-adopters is zero to the right of Z(t),
since this is an exit point. The last boundary condition is obtained from our assumption that

x reflects at x = 0. The fraction of agents that have adopted the technology is thus given by

N(it)=1- /i(t) m(zx,t)dzx. (12)



We use these equations to provide an equilibrium definition, equivalent to Definition 1, which

emphasizes the dynamic nature of the equilibrium.

DEFINITION 2. An equilibrium is given by the functions { D, m, Z, N} satisfying the coupled
p.d.e.’s for D and m in (9) and (11), and the boundary conditions in (10), (11), and (12).

We note that this system of p.d.e.’s is involved for two reasons. First, the equations are
coupled through z and N. Second, the equations feature a time-varying free boundary, which

is known to be non-trivial.

3 Equilibria

In this section we establish equilibrium existence, the possibility of multiple equilibria and
equilibria with “delayed adoption” (relative to an efficient benchmark). We also characterize
equilibria with no adoption, i.e., situations in which given an initial condition mg, no one

will use the technology eventually and conclude by discussing stationary equilibria.

3.1 Monotonicity and Existence of Equilibrium

The next lemma shows that the function X', giving the path of the optimal threshold z as
a function of the path N, is monotone decreasing. Thus, an agent facing a higher path of
adoption will choose to adopt earlier. Moreover, the lemma shows that an agent facing larger

values of 0y and/or 6,,, will also adopt earlier.

LEMMA 2. If T < oo let the terminal value function be Dr(x) and 6,, > 0. Let T be
the optimal threshold path for an agent facing the path N. Consider two paths such that
N'(t) > N(t) for all t € [0,T], then Z'(t) < z(t) for all t € [0,T]. Moreover, let 0 = (6o, 6,,)
with the corresponding optimal threshold path z. If 8’ > 6 then 7'(t) < Z(t) for all t € [0, T].

Lemma, 2 also holds in the discretized version of the model.* The proof holds as we verify
the conditions to use Topkis (1978). Thus, once we reformulate the problem in terms of
stopping times, we can apply the monotone comparative statics logic developed by Milgrom
and Shannon (1994) to characterize the policy function.

Next, we show that given the initial condition mg(z), if the path z(t) < #'(¢) then
N'(t) < N(t) for all . We need to show that the fraction of non-adopters is decreasing in

z(t). This implies that A is monotone decreasing.

4For instance, it holds for a finite difference approximation, which we use for some computations, and
which converges to the continuous-time version.



LEMMA 3. Fix mg and consider two paths for the thresholds z and 7', satisfying z’'(t) > z(t)
for all t € [0,T]. Let N' = N (Z';mo) and N = N (Z;mg). Then N'(t) < N(t) for all
t € [0, T]. Moreover, fix a threshold path Z, and consider two initial measures with mg(z) >
mo(x) for all z € [0, U], then N’ = N (Z;m}) and N = N (Z;mg). Then N’'(t) < N(t) for all
t 10,77

The next theorem uses the monotonicity of X and N, proven in Lemma 2 and Lemma 3, to
establish through equation (6) that F is monotone. This allows us to use Tarski’s theorem

and establish the existence, and possibly the multiplicity, of equilibria.

THEOREM 1.  Consider either the discretized model or its continuous time limit, let 7" be
the terminal horizon and 6,, > 0. Fix an initial condition mg and a terminal value function
Dr.

(i) The equilibria of this model are a non-empty lattice. Hence the model has a smallest
equilibrium, {7, N}, and a largest one, {#f1, N} and any other equilibrium path {z, N'}
satisfies NP < N < N# and z' >z >z for all t € [0, T].

(ii) Let 0" > 0, and m{, < my for all x € [0,U]. Consider the equilibrium {z’, N'} with the
largest N corresponding to {6#’, my} and the equilibrium {z, N} with largest N corresponding
to {0, mo}. Then @ <z and N’ > N for all ¢t € [0, 7.

An important consequence of part (i) of the theorem is that the equilibrium set, given
the initial distribution of non-adopters mg (and for finite 7" the terminal valuation Dr), is
a lattice. We can compute the value of the extreme equilibria (i.e., the smallest and the
largest) by iterating on N**1 = F(N*: Dy, mg) for k = 0,1, ..., starting from N°(t) = 1
or from N°(t) = 0, for all ¢. The theorem ensures that the limit of this iterative process
converges to a fixed point. Moreover, if the two sequences converge to the same limit, then
the equilibrium is unique.

Two remarks are in order about part (i). First, as mentioned above, we implement the
computations of the extreme equilibrium using the discretized version of the model for a
finite T'. Second, while this theorem shows that an equilibrium exists in the continuous time
case, the theorem does not show that the fixed point N or Z are continuous functions of time.
As a consequence, the theorem does not establish the existence of a classical solution of the
p.d.e.’s discussed in Section 2.2. Nevertheless for all the numerical examples of the extreme
equilibrium that we computed using the discretized model we have found no behavior that
resembles jumps in the path of N or z. A type of equilibrium with a single jump is described
in the next section as a “delayed adoption equilibrium”. There we establish conditions under

which the technology adoption can be shifted to an arbitrary future period.’

5We thank one referee to prod us to extend Theorem 1 to both discrete and continouos time as well as T
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Part (ii) of the theorem focuses on the “high-adoption” equilibrium and establishes a
useful comparative statics result: considering a larger 6, or a “smaller” my (more agents

endowed with the app at time zero), leads to more adoption.

3.2 Delayed Adoption Equilibria

In this section, we consider a family of multiple equilibria that are identical except for being
shifted over time, with arbitrary delays in the onset of adoption. This family of equilib-
ria arises under two main assumptions. The first assumption requires a prominent role of
complementarities, namely parameters that satisfy U8y < pc, so that the adoption decisions
depend on adoption decisions by “others”. The second assumption is a restriction on the
initial condition, namely that no agent starts with the technology at time zero. We have the

following proposition.

ProPOSITION 1.  Assume that Ufy < pc, that mo(x) = 1/U, and that T' = co. Assume
that there is an equilibrium with (N, Z) such that N(0) > 0 and z(0) < U. Let t, > 0 but
otherwise arbitrary. Then there is an equilibrium (N’, ') with N'(0) = 0 and #'(t) = U for
t €0,ty), and with N'(t) = N(t —to) and Z'(t) = z(t — to) for all t € [ty, 00).

A few comments are in order. First, the interpretation of U6y < pc is clear. It says that
using technology when nobody else uses it (even if x were kept at its highest value forever)
does not compensate the adoption cost. Second, the delay in adoption featured in the (N’, ')
equilibrium is arbitrary and hence depends on an extreme amount of coordination of agents
agreeing on when to adopt. Third, an equilibrium with ¢, > 0 cannot be the highest one,
since it is dominated by the equilibrium with zero delay. Fourth, the initial equilibrium (N, z)
can be the highest one.

We note that the previous proposition assumes that the equilibrium (N, Z) starts with
N(0) > 0 and Z(0) < U. These assumptions imply that, in the corresponding equilibrium
with a delay tg > 0, there is a downward jump in ' and an upward jump in N’ at time t,.
The next proposition shows that the assumption that N(0) > 0 and z(0) < U is without loss

of generality.

PROPOSITION 2. Assume that U6y < pc and that mo(z) = 1/U. Then there is no
equilibrium in which z(0) = U, Z(t) < U for t > 0, and Z(¢) is continuous at ¢t = 0.

The proposition establishes that if there exist an equilibrium with adoption, i.e. one

where Z(t) < U, and the economy starts with zero adoption, then the threshold z(t) must

finite / infinite. We thank the editor and one referee for suggesting us to investigate the possibility of jumps
when there are strong strategic complementarities.
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display a jump, which is necessary to create a significantly large mass of adopters to initiate
the technology diffusion. Given a calibrated value of p, we estimate the parameters 6, and
¢, among others, in Section 8: for our estimated values, we find that 6,U > pc, that is, the

opposite inequality from the one that assumed in the propositions above.

3.3 No-Adoption Equilibrium

The setup may feature an equilibrium with zero adoption, i.e., Z(t) = U for all t. For
simplicity we focus on the case where T' = oo. This case is particularly easy because agents’
decisions are in a corner. We characterize the basin of attraction for such equilibrium, i.e.,
we find a threshold for the number of adopters IV, such that a no-adoption equilibrium exists

if and only if at ¢ = 0 the mass of agents with the technology is smaller than N.

PROPOSITION 3. A no-adoption equilibrium with Z(t) = U and N(t) = N(0)e™** for all
t > 0 exists if and only if 1 — fOU mo(x)dz < N, where

pe p%

—%1+waﬂ+N [+ngﬂ (13)

sch(y) — coth
77_\/02, p+y and g ECbC (y) = coth(y) € (—3,0) . (14)

Y

Note that N > 0 if and only if % > 0y [1 + g(nU)]. Moreover, if N > 0 we have:

(i) NV is an increasing function of o, satisfying

() < < £ o), e

where the lower (upper) boundary is reached as ¢ — 0 (0 — 00).

(ii) N is a decreasing function of 6,,.

An immediate corollary of this proposition is that mg(z) = 1/U is an invariant distribution
provided that N > 0, i.e., if the economy starts with no adoption, then it may remain in
that equilibrium forever (no adoption is a stationary equilibrium). That N > 0 requires 6,
to be small is easily understood: if 6, is large agents with a high x will find it profitable to
adopt regardless of what the others choose. Likewise, that N > 0 is increasing in ¢ implies
that if agents are hit by larges shocks the no-adoption equilibrium is more likely to occur.
This result follows because, for a given U, a large o makes the reversion to the mean faster,
lowering the benefit of adoption. Finally, if #,, is large then it is more profitable to coordinate

on high N and the basin of attraction of the no-adoption equilibrium is smaller.
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3.4 Stationary Equilibria

In this section we let T" = oo and analyze the stationary equilibria of the continuous time
model. We look for an initial condition myg, such that the distribution is invariant, so that
both Z(t) = Zss and N(t) = N, are constant through time. We will show that convergence
to the stationary equilibrium must be gradual, i.e., that it is not possible to “jump” to the
stationary equilibrium given a generic initial condition in the model where o > 0.°

A stationary equilibrium is given by two constant values of Ny and T, that solve the
time-invariant version of the partial differential equations presented in Section 2.2. From a

mathematical point of view the equilibrium is a fixed point. Given N, D and T s SOlve:

pD(z) = z(0y + 0, Ny, + %QDm(x) if x € [0, ZTys) Value of Adoption

D,(0)=0 Reflecting

D(Zy,) = ¢ Value Matching
ﬁx(iss) =0 Smooth Pasting .

Conversely, given Z,, the density m solves

2

1
0= —vin(x) + v + %mm(x) KFE if z < 7,

m(Zss) = 0 and m,(0) =0 Exit and Reflecting .

Notice that the (stationary) equilibrium m(z) and Zs solve the fixed point

Ngs=1-— / : m(s)dz.
0

We begin by solving for D(z) and Z,, given a value for N, (see Appendix A.1 for details).
Using the solution for D we can solve for X, : [0,1] — [0, U], a function that gives the
optimal stationary threshold as a function of a given N . The monotonicity properties of
the function D on the parameters Ny, 6, c and 0y give the following characterization of the
threshold A;.

LEMMA 4. The function X, is decreasing in N, strictly so at the points where 0 < 7., < U.
Fixing a value of N, the function X, is strictly increasing in ¢, strictly so at the points

where 0 < Z,, < U. Fixing a value of Ny, the function X, is strictly decreasing in 6,

6An immediate jump to the stationary equilibrium might instead occur in a model with o = 0 (See the
Online appendix J of Alvarez et al. (2023b)).
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and 6, at the points where 0 < Z,, < U. Moreover, we have the following expansion:
Xor(N) = gt + 5+ 0l0).

Since the function Xs(Ns) is decreasing in N, it has an inverse, Xs_sl, given by:
X_l (7 ) _ 1 pe 9 h
ss \Lss) = en (1«}»7](1&167@5371426_775”53))(6"535+6_ni53) 0 where

(j;ss + Ajen®ss 4 [12@—77%55) _

_ 1—e _ 1—e
AlElM’Azzl(—e) andnE ‘/Qp/0-2_ (16)

n (e —ev)

7](6712 —eNTss )

Note that, from the expansion given in Lemma 4, fixing Z,,, then X_!(Z,,) is increasing in

o in a neighborhood of ¢ = 0. Provided that 8,, > 0 we have

1 cp
X T~ ——F——=—0y ).
SS ( ) Qn (Zf'ss—O'/\/% 0)
Next we can solve the Kolmogorov forward equation for m(x), given a barrier Z4, subject
to an exit point and to the boundary conditions coming from the reflecting barriers. We
denote the corresponding value of the fraction that have adopted as Ny, (Z,s). Solving this

equation we obtain

_SS t h _SS
Nis(Tss) = 1—%4—%3%) where v = /2v/0?. (17)

Inspection of equation (17) yields the following characterization of N.

LEMMA 5. Fix v > 0, then N, (Z) is strictly decreasing in Z,. Fixing > 0, then N, is
strictly increasing in 7, and hence strictly decreasing in 0. Moreover, we have the expansion:
Nis(T) =1 = %2 + %= + 0(0).

As is intuitive, the value of Ny, (Z,s) is decreasing in the level of the barrier Z. The system
given by equation (16) and equation (17) determines Zss and Ng,. In particular, a stationary

equilibrum is described by the pair {Zs, Ngs }, which solves
Nss = -A/’ss(jss) = XS_SI(ESS)'

Next, we summarize the behavior of the stationary equilibrium for small values of o.

We label the stationary equilibrium with superscripts { H, L} to hint at the associated High

or Low level of adoption, so that 7 < z%. Indeed setting o = 0 in the two expansions

given in the previous two lemmas one obtains a quadratic equation for Z,, /U whose solution,
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whenever in (0, 1), gives the two interior steady states.

PROPOSITION 4.  Assume that v > 0 and that the parameters 6y, 0,,, c and p are such that
there are two interior stationary equilibria in the deterministic case of ¢ = 0, and label them
as 71 < L. Then, (i) there exists a @ > 0 such that for all ¢ € (0,5) there are two interior
stationary equilibria with z2 < z% . (ii) The threshold for each stationary equilibrium is
continuous with respect to o at ¢ = 0. (iii) The sign of the comparative static differs across

stationary equilibria, with

aig>0>a@§s and ajSL‘S >O>aifg
Jdc dc 890 890 ’

The proposition shows that the high adoption stationary equilibrium behaves in an intuitive
way, with more adoption (a lower %) associated with a smaller adoption cost (c), or with
a larger intrinsic value of the technology (6y). The comparative statics for the low adoption
stationary state are just the opposite: adoption is higher as the adoption cost increases.
The latter (unrealistic) feature, and the unstable nature of the low adoption equilibrium (see
the next section), will lead us to focus on the high adoption equilibrium in our quantitative

analysis.

Figure 1: Stochastic Stationary Equilibria: Density of non-adopters: m(x)

High and Low Adoption Stationary Equilibria

Figure 1 shows the densities of the invariant distribution of the high- and low-adoption

equilibria. A notable feature of the stationary distribution of non-adopters is that, provided
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o > 0, the distibution features agents with “low x, namely with z(t) < Z,s, who have the
technology. These are agents who adopted the technology in the past (for some ¢’ < ¢ when
z(t') > z(t'), and whose = decreased over time. As a result, m(z) < 1/U when o > 0, and
the density of non-adopters below Z,, is not uniform. Given that the density takes time
to adjust, the stochastic model features dynamics in the adoption of a new technology: for
instance if the economy starts with my = 1/U, it takes time to move from the initial to the
invariant distribution, as agents adopt when z(¢) > Z(t) and it takes time for the z’s to crawl
back below the stationary threshold. In other words, this form of the invariant distribution
and the fact that agents follow a threshold rule implies that there is no equilibrium where
at some finite time ¢ the economy jumps to the steady state. Instead, as mentioned above,
such a jump must occur in a model where x is heterogeneous across agents and ¢ = 0 for a

large set of initial conditions (see Proposition 20 in Appendix J in Alvarez et al. (2023b)).

4 Stability of Stationary Equilibria

In this section we analyze the local stability of the stationary equilibria. We explore the
question by perturbing the stationary distribution of adopters, using techniques from the
Mean Field Game literature developed in Alvarez, Lippi and Souganidis (2023a). For this
purpose, we use the equilibrium Definition 2. This dynamical system is infinite-dimensional
because the state, at every time ¢, is given by the entire density m(z,t).

The objective is to consider the stationary equilibrium m and ask if, starting from a
condition my close to m, the economy converges to m. As the system is infinite-dimensional,
many “deviations” are possible. Any initial condition can be described by mg(x) = m(z) +
ew(z), for some w satisfying fOUw(m)d$ = 0. The sense in which the analysis is local is that
we differentiate the system with respect to € and evaluate it at ¢ = 0. The alert reader will
notice that the local dynamics of a system in R? are encoded in a ¢ X ¢ matrix. The analogous
infinite dimensional object is a linear operator that will be presented below.

We begin the analysis with the approximation of z(¢) = A (NV)(t). That is, we study
how perturbing the aggregate path of adoption N leads to adjusting the decision rule for
threshold path z. To do this, we take the directional derivative (Gateaux) with respect to
an arbitrary perturbation n of a constant path N. In particular, we consider paths defined
by N(t) = Ngs + en(t) around the stationary value Ng;. We denote this Gateaux derivative
by ¥, so that Z(t) ~ Zss + €y(t).

LEMMA 6. Fix a stationary equilibrium with interior Z,, and its corresponding Ng,. Let
Dy be equal to the stationary value function D corresponding to that stationary equilibrium.
Let n: [0,7] — R be an arbitrary perturbation. Then

16



t) = 1i
y(t) im -
0 T
== G(1 — t)n(1)dT, 18
where
o) 2 1 . 2 .
= o Wis > — g (3 +J) o _ cos(mj)
G(S)—jzgcge >0,y =p+ 5 (—_ss and ¢; =2 (1 —7r(j+%) 7

where D, (Zss) < 0 is the second derivative of the stationary value function:

~ _ PC - fz'ss [90 _'_ enNss] 'TSS tanh (P)/ijss) 2V
Dy (T,5) = Naw =124 ——— and y =4/ 5.
(ZTss) =y U + NG and ~y 2

Thus, we can write Z(t) = Zss + €y(t) + o(e). Note that G is positive and D,, is negative,
so the effect of the future path on the current value is negative, which is consistent with the
property that X is decreasing. Also note that it is proportional to 6,,, so if 6, = 0, then the
threshold will be constant. Thus, the approximation of Z(t) depends on the perturbation
of the path of N from ¢ to T, given by n(s) for s = [t,7]. The proof of the proposition
is obtained by jointly differentiating with respect to € the system defined by D and Z in
equation (9) and equation (10). This yields a new p.d.e., and new boundary conditions. The
expression for ¢ is obtained once we solve this new p.d.e., see the proof in Appendix C.1.

Now we turn to the perturbation for the fraction of the adopters, as a function of the
threshold path and of a perturbation of the initial condition. We approximate N(t) =
N (Z,mp)(t) by taking the directional derivative (Gateaux) with respect to an arbitrary per-
turbation y of a constant path  and a perturbation w on the stationary density m. In
particular, we consider paths defined by Z(t) = Zss + € g(t) around the stationary threshold

Tss, and mo(z) = m(x) + ew(x). We will denote this Gateaux derivative by n.

LEMMA 7. Fix the interior threshold Z,, of a stationary equilibrium and its corresponding
N5, and let m be the corresponding invariant distribution of non-adopters. Let w : [0, Zs5] —
R be an arbitrary perturbation to the distribution, and let g : [0,7] — R be an arbitrary
perturbation of the threshold. Then

N(jss + €y; m+ €w) (t> B N(jss; 77~’L> (t)

n(t) = 13{51 ;
= no(w)(t) + % /0 J(t —T1)y(T)dr (19)
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where - 1 o
1 1
J(S) = Z e Mi% with pj=v i _0_2 <M) (20)

_ Tss (), w) o—hit
1ol == 2 T e (21)

() = sin ((% +j) T (1 — %)) for x € [0, Z4) (22)

y 2 Tss
ﬁﬁ%:fmé pi(2)w(w)dr and i (&.,) = — tanh(1Z,,).

Thus, we can write N(t) = Ng + en(t) + o(e). This formula encodes the effect of two
perturbations: w and y. The former is the perturbation on the initial condition mg, whose
effect is in the term ng(w)(t). We note that ng(w)(t) is the effect at time ¢ on the path N(t)
triggered by a perturbation of the initial condition keeping the threshold rule z fixed. The
function ng(w) can be further reinterpreted by considering the limiting case of a perturbation
w given by a distribution concentrated at x = & < Iy, i.e., a Dirac’s delta function as

w(z) = 0z(x). In this case,

i (G+)r(1-2))
G

no(dz)(t) = — Z 2

Jj=0

The effect of the perturbation, 7, on the path of the threshold, Z(s), is captured by the second
term in equation (19). This term gives the effect at time ¢ on the path N(¢) of a perturbation
of the threshold rule Z, keeping the initial condition m fixed. Also, consistent with our general
result for NV, the effect of the threshold is negative, as J > 0 and m, (%) < 0.

For future reference it is useful to understand the behavior of ng(t) as function of time.
In particular, the rate at which the perturbation w to the initial distribution converges back
to the stationary distribution, while keeping Z(¢) = Z . This rate is given by the value of
o =V + %2 <f—l>2, i.e., the dominant eigenvalue.”

The next step is to use the last two lemmas to derive one equation for the linearized
equilibrium as a function of the perturbed initial distribution mg(z) = m(z) + ew(x). We
combine equation (18) and equation (19) to arrive to a single linear equation that n(t) must

solve as a function of w.

THEOREM 2. Fix an interior threshold z, for a stationary state, with its corresponding

"The proof is in Appendix C.2 and resembles the one for the previous proposition.

18



Ngs, and let m be the corresponding invariant distribution of non-adopters. Let mg(x) =
() + ew(z). Let Dy be equal to the value function D corresponding to that stationary

equilibrium. The linearized equilibrium solves

n(t) = no(w)(t) + © /0 K(t, s)n(s)ds, (23)

Mg (?ss )0'20n
ZTss Do (i'ss)

where ng(w)(t) is given in Lemma 7 and © = > (. The kernel K is given by

oo 0 (pi+v;) min{t,s} __ 1

e

K(t,s) = E g cje it { } > 0. (24)
=0 j=0 Hi 1

N
Moreover, Lip, = sup, [ |K(t,s)|ds < (i‘%) . Furthermore, if © Lip, < 1 there exists a

unique bounded solution to equation (23) which is the limit of
T
n=[I4+06K+60’kK*+...] ny(w) where K(g)(t) = / K(t,s)g(s)ds, (25)
0

and where K71 (g)(t) = fOT K(t,s)K?(g)(s)ds for any bounded g : [0,7] — R.

A few remarks are in order. First, note that K depends on 8, as j;,; are a function of
Zss, which is itself a function of 6,,. The coefficient © depends on 6, directly and indirectly
via Ts. Hence equation (23) depends on which stationary equilibrium we focus on. Second, if
we discretize time so that t € {A(j—1):j=1,...,J} for A, = %, as done in Section 2.1,
then the operator K is a J x J matrix with elements K (¢;,t;), and ng, n are J x 1 vectors, so
that equation (23) becomes the linear equation n = ng + ©X n. Third, the fact that O > 0
implies that the terms OK + ©2K? + ... in equation (25) give the amplification over and
above ng, due to the time-varying path of the barrier z.

Figure 2 illustrates the stability of the high and low adoption equilibria, respectively, in
Panels (a) and (b). Each panel considers two shocks that displace a small mass of agents
away from the invariant distribution of non-adopters and endows them with the app. The
blue line depicts the case where the app is given to agents with low benefit, namely with
x =~ 0, while the red line considers a perturbation where the app is given to agents with a high
benefit, namely with z ~ Z,,.® Two remarks are due. First, the high adoption equilibrium
is locally stable, as displayed in Panel (a): for all shocks considered, the system returns to

its invariant distribution. We also note that the half life of the shock is much shorter when

8Parameters used for illustration: 6y = 26.32; 6,, = 5.72-0y; U = 1; v = 0.0278; r = 0.05; o = 0.032;
c=2-10.54 - 6.
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Figure 2: Perturbation of Stationary Equilbria
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(a) High Adoption Stat. Eqbm. (b) Low Adoption Stat. Eqbm.

the perturbation assigns the app to agents with a high benefit (z &~ ), as these agents
were going to get the app soon anyways. Second, Panel (b) reveals that the low adoption
equilibrium is unstable: the dynamics of the system following a perturbation are explosive,
i.e., the sequence in equation (25) does not converge so that the system does not return to
the invariant distribution after the shock. To appreciate the explosive nature of the path
nearby the low activity stationary equilibrium, notice the difference in the scales of the two

panels.

5 The Planning Problem

This section sets up the planning problem, characterizes of its solution, and shows how it can
be decentralized as an equilibrium with a subsidy.” The planner solves a non-trivial dynamic
problem since the state of the economy is an entire distribution.

At time zero the planner solves:

max{/ / (U = mls,))s (60 + 6,N(0) ds

{z(t)} %

~
Density of adopters Flow benefit

_ /e""tc(Nt()Jrz/N())dt }

0

J/

TV
Flow of adoption cost: gross new adoptions

9Appendix D.1 characterizes the stationary solution of this problem. Appendix D.5 uses a linearized
version of the problem to analyze dynamics around its invariant distribution, an exercise that is akin to the
one of Section 4.
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subject to

()
N(t) = —/ m(s,t)ds for all t
0
2

my(z,t) = —v (m(z,t) — 1/U) + %mm(x,t) for x € (0,z(t)) and all t > 0 KFE

m(z,t) =0 for x € [Z(t),U] and all ¢ > 0 Adoption
m.(0,t) =0 forallt>0 Reflecting
m(x,0) = mo(z) for all = . Initial condition

The objective function of the planner integrates the lifetime utility of agents using as a
weight the discount factor e™" for the cohort born at t. The first term contains the utility
flow of the agents who use the technology. The second term subtracts the cost of adoption,
where ¢(N;(t) + vN(t)) is the gross flow cost of adoption at time ¢. This flow cost is driven
by the inflow of new adopters N;(t) and by the replacement of dead agents (who had adopted
in the past) by newborns.!® The first constraint defines N(t), the second constraint is the
KFE for the density of non-adopters, m. As before, the density is zero to the right of z(t),
there is an exit point at Z(t), and there is a boundary condition from the reflection at zero.

At each time ¢ the planner decides a threshold Z(¢) that determines adoption, taking as
given the initial condition mg(z) and the law of motion of the density m (affected by the choice
of 7). To characterize the solution, we write the Lagrangian for this problem. We denote the
Lagrange multiplier of the KFE equation by e " \(z,t) and replace N(¢) and Ny(t) by the
corresponding definition. To derive the p.d.e’s for non-adopters, we first adapt the planning
problem to a discrete-time discrete-state problem using a finite-difference approximation. In
this set up, we allow for a more general policy, i.e., not necessarily a threshold rule. We
obtain the first order conditions for a problem in finite dimensions and take limits to find the

corresponding p.d.e’s, summarized in the following proposition.!!

LEMMA 8. A planner’s problem is given by {z(t), A(z,t), m(z,t)} such that adoption

occurs for x > Z(t), and the Lagrange multiplier A, and the density of non-adopters m solve

10At every moment there is an inflow v of newborns without the app. A fraction 1 — ? of the newborns
immediately pays the cost ¢ and adopts, see Appendix D.2 for details.

VWe provide details of this derivation in Appendix D.3.
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the p.d.e. for non-adopters:

z(t) z(t)
pA(x,t) = z(@o + 0,1 — / m(sj)ds]) +6, (% — / m(s,t)s ds) (26)
0 0
+ %QAxx(l'ﬂf) + M(z,t) for x < z(t) and t > 0
Mz, t) =cforx > Z(t) and t > 0
Ae(Z(t),t) =0 for t >0 (27)
A:(0,8) =0fort >0

and my(z,t) = v(1/U — m(z,t)) + %Qmm(x,t) forx <z(t) and t > 0
m(z,t) =0 for x > Z(t) and t > 0
m,(0,t) =0 for t >0
m(z,0) = mg(z) for all x .

This lemma has two important consequences. First, it allows us to compute the solution
of the planning problem following similar steps as the ones used to compute the equilibrium in
Section 3.1. Second, it indicates how to decentralize the optimal allocation as an equilibrium.
Define Z(t) = % — Oj(t) m(s,t)sds > 0 and note that this non-negative magnitude is the
difference between the average x in the population, U/2, and the average x among those who
have not adopted the technology (the integral term). Comparing the p.d.e. for the Lagrange
multiplier A in equation (26) with the p.d.e. for D that characterizes the equilibrium in
equation (9), we see that these equations only differ in the flow term 6,,Z(¢). Thus, if agents
who adopt the technology are given a flow subsidy 6,,Z(t) every period after they have adopted
(independent of the app’s usage), then the planner allocation is an equilibrium. Clearly, this is
equivalent to a once and for all payment to agents adopting at ¢ equal to 6, ftoo e Py (s)ds.
Note that 6,,Z(t) contains the inframarginal valuation of the technology for those that use it,
so the subsidy’s work by correcting the externality associated with the individual adoption.

We summarize this discussion in the following theorem.

THEOREM 3. Fix an initial condition mg and the solution to the planner’s problem {z, A\, m}.
The planner’s allocation coincides with an equilibrium with the same initial conditions and

a time-varying flow subsidy paid to adopters given by 6,,Z(t), where

Z(t) =

SIS

a(t)
— / m(s,t)sds forallt>0 (28)
0

The subsidy 6,7 is independent of .
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For future reference, we define Z = Z(z;mg) as the solution of the path for Z defined
in equation (28). In particular, given Z and mg, we solve for m using the KFE and then
compute Z.

Consider the path T that solves the p.d.e. pA(z,t) = z (6p + OnN(t))+c9nZ(t)+%2)\m(a:, t)+
At(z,t) with the three boundaries given in equation (27) given the paths of NV and Z and
terminal condition A(x,T) = Ap(z). Let 7 = XT(N, Z; Ar) denote the functional, defined
as the X in Section 2.1, where the superscript P denotes the planning problem. Note that,
using the definitions for X*, Z and A the planner’s problem must satisfy the fixed point
5 = H(T*, Ap,mg) where H(Z; \p,mo) = XT(N(Z;my), Z(Z;mp); Ar). We can use the
analysis used in Section 3, based on monotonicity, to characterize the solution to this fixed
point problem, and to compute it.

Figure 3 illustrates how the application of the optimal subsidy leads to a high adoption
equilibrium. In Panel (a) of the figure, we plot the time path of the share of adopters, N(t),
for the planning problem, using the stationary equilibrium distribution of non-adopters as
the initial distribution (i.e., mg(x) = m(x)). Let denote by Ny, the value of the equilibrium
steady state. In the planning problem, the path of N(¢) jumps immediately from Ny, (at the
time the subsidy is introduced) and gradually converges to the stationary distribution for
the planning problem.'? Panel (b) shows the time path of the optimal subsidy to implement
the optimal, Z(t), which starts at the value Z(0) = ¥ — OEH m(s)sds and increases over
time. In this example, the high-adoption equilibrium has partial adoption, i.e., Ng < 1, but
the efficient allocation, as can be seen in panel (a), converges to almost full adoption of the

technology.

Figure 3: Planning Problem: mg(x) = m(x)
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12In this example, N, = 0.42.
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6 Adding Information Diffusion

We incorporate learning about the existence of the technology through a simple extension of
the celebrated Bass’s (1969) model of information diffusion. We do so both for completeness
and to accommodate the evidence on knowledge on the technology presented in Section 8.
We first describe how the learning process works, then present the extension to the baseline

model, and conclude with two simpler special cases: #,, =0 or o = 0.3

Dynamics of Learning. We assume newborn agents are initially uninformed and become
informed by randomly matching with informed agents. The set I(¢) of informed agents is
divided into N (t) agents who have adopted and M (t) agents who are informed but have not
adopted, so that I(t) = N(t) + M(t). Both types of informed agents transmit information,
so the dynamics of I(t) are independent of agents’ adoption decisions. The law of motion
of m needs to be modified to include the inflow of informed agents as in a random diffusion
model:
o’ Bo _
my(x,t) = ?mm(x,t) + ﬁl(t)(l —I(t)) —vm(z,t) allt > 0 and x € |0, 7]
m(z,t) =0allt >0 and z € [z, U]
m;(0,t)c =0allt >0

where I(t) denotes the fraction of the population informed about the technology, and the
parameter (3 is the parameter governing the number of meetings per unit of time between
those informed, I(t), and those uninformed, 1 —1(t). The term %I (t)(1—1(t)) represents the
flow of agents per unit of time who learn about the app. The time path for I(¢) has a closed
form solution: it is initially convex, then becomes concave, and converges to I,s = 1 — v/ f.
The entire path of I depends only on the parameters (v, ) and on the initial value of
1(0). If 1(0) is sufficiently small, then I(¢) remains low for an extended period of time. See
Appendix E for additional details.

Baseline model (o > 0,6, > 0). Above, we described the law of motion of m for a
given path of . We now describe the determination of Z, which applies only to informed
agents. The variational inequality governing the adoption decision (i.e., net value of adoption
a(x,t) — ¢ and the net optimal value v(z,t)) are the same as in the model with strategic
complementarities, since adoption can occur only after agents become aware of the technology.

Thus, the only change lies in the law of motion of m described above. Theorem 1 and

13We thank the editor and one referee for suggesting us to investigate the possibility of jumps and the role
of 0 = 0.
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Theorem 3 extend in a straightforward manner to this case. Also, as t — oo, so that
I(t) — I, this model has stationary states which are a scaled version of the ones for the
model without learning.

Next we analyze the interaction between learning and strategic complementarity. The
following proposition considers a case of strong strategic complementarity with an initial
condition in which no agent has the technology. In this case, for sufficiently small I(0), there
is a period where there is no adoption followed by a downward jump in Z and an upward

jump in N (coming from zero):

PROPOSITION 5. Assume that U6y < pc. Then for any 7 > 0, there is a 1(0) small enough,
such that z(t) = U for t € [0, 7).

The intuition behind Proposition 5 is straightforward: until there is a critical mass of
informed agents, I(7), adoption cannot occur. Recall that for any 7 > 0 and € > 0, there
exists an /(0) small enough such that () < e for all t € [0, 7). It then follows that adoption
is bounded above by N(t) < I(t), and, given the assumptions of the proposition, even agents
with the highest = find it optimal to delay adoption (since U6y < pc). Indeed the proof is
almost a line-by-line adaptation of the proof of Proposition 2. Figure E3 in the appendix uses
parameters and initial conditions as in Proposition 5 to illustrate that there is no adoption as
long as I(t) < I(7). This figure also shows that the multiple equilibria, involving the further
delay in adoption described in Proposition 2, extends to the model with learning.'*

We conclude this section by considering two simpler versions of the learning model.

Learning without strategic complementarity. This setup, developed in detail in Ap-
pendix E.1, considers a “pure” learning model without complementarities (¢,, = 0) in which
adoption benefits are random (¢ > 0). Informed agents can pay the cost ¢ and adopt. We
show that the optimal decision for informed agents is given by a time-invariant threshold z,
which is independent of the network size. This invariance implies that there is no selection
in the adoption of the technology: early and late adopters are similar agents in terms of
their x, differing only in the timing of when they learn about the technology. This prediction
contrasts with the evidence on selection discussed in Section 7.2.1. The model has a unique
constrained-efficient equilibrium with a logistic S-shaped path for N when the initial share
of informed agents is small. Along the equilibrium path, the dynamics of N(¢) are fully
determined by the dynamics of I(t).

14\With learning, the continuation of the highest equilibrium differs from that of the equilibrium with delay.
This difference arises because, when o > 0, agents who adopted before the delay continue to contribute to
the size of the network even if their x falls below the adoption threshold.
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Learning with complementarities and fixed types. A learning model with comple-
mentarities (6, > 0) is analyzed in details in Appendix E.2, where the idiosyncratic benefit
of adoption z is deterministic (¢ = 0). In this model the adoption benefit depends on the
size of the network N(t), while the agent type z is immutable. We focus on the case where
either none or very few agents start with the technology —defined properly in Appendix E.2.
In this case, due to the network effects (,, > 0), the optimal decision for informed agents is a
monotone, time-varying threshold Z(¢), with an associated monotone (increasing or decreas-
ing) path for N(¢). The model may feature multiple constrained-efficient equilibria, and the
dynamics of the equilibrium path N(t) are again determined by the dynamics of I(t).

The simplicity of the model with ¢ = 0 has both advantages and disadvantages. One
advantage is that it allows for a complete characterization of the critical delay threshold I(7)
given in Proposition 5. Another advantage is that the equilibrium path starting from low
adoption can be computed explicitly. On the other hand, the reason the equilibrium can
be computed explicitly is that is is essentially static. In particular, the level of N(t) at the
highest equilibrium is just a function of I(¢). This implies that if we consider an “MIT” shock
that removes the technology from a group of agents who had previously adopted, these agents
immediately re-adopt, and the equilibrium returns to its pre-shock position, as described in

Proposition 16. Instead, in a model with o > 0, re-adoption occurs gradually.

7 Application: SINPE, A Digital Payments Platform

In May 2015, the Central Bank of Costa Rica (BCCR) launched SINPE Mévil (hereafter,
SINPE), a digital platform that enables users to make money transfers using their mobile
phones.’ To utilize SINPE, users must have a bank account at a financial institution and
link it to their mobile number. According to the BCCR, the primary objective of SINPE was
to become a mass-market payment mechanism that could reduce the demand for cash as a
method of payment. As such, SINPE was originally designed for relatively small transfers,
which are not subject to any fee as long as they do not exceed a daily sum. The maximum
daily amount transferred without a fee varies by bank; for most users, it is approximately
$310, although some banks have lower limits of $233 and $155.16 The average transaction
size in SINPE is about $50, and has slowly decreased over time, as shown in Figure G2.
While, in theory, firms are allowed to adopt SINPE and conduct transactions within the

app, in practice, transactions involving firms represent less than 5% of all payments. This

I5SINPE is an acronym for the initials of “National Electronic Payment System” (Sistema Nacional de
Pagos FElectrdnicos) in Spanish.

16Respectively, these limits in dollars correspond with approximately 200,000; 150,000; and 100,000 Costa
Rican colones. These amounts correspond with 2021 limits and exchange rates.
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motivates us to study adoption through the lens of our model while focusing on peer-to-peer
transactions where small agents trade with each other, rather than one with a few non-
atomistic players (large firms). Appendix G.2 presents details on the transactions by user
type and between networks and discusses the slow adoption for person-to-business(P2B) and

business-to-business (B2B) payments.

7.1 Data

This section describes the battery of administrative datasets used in the paper. First, we
leverage data on SINPE transactions. Our data on SINPE usage is comprehensive: For
each user in the country, we have official records on the exact date when she adopted the
technology, along with records on each transaction made. In particular, for each transaction,
the data records the amount transacted along with the individual identifier of the sender
and the receiver of the money. Records also include the sender’s and the receiver’s bank.
Importantly, this information is available, not only for individuals, but also for firms.

We also leverage information on networks of coworkers for each formally employed in-
dividual, along with their income. Matched employer-employee data is obtained from the
Registry of Economic Variables of the Central Bank of Costa Rica, which tracks the uni-
verse of formal employment and labor earnings. The data include monthly details on each
employee, including her earnings and employment history spanning SINPE’s lifetime (2015-
2021).17 With this information, we can identify which people are working at the same firm in
a given month to construct networks of coworkers which can be matched to SINPE records.
Networks of coworkers vary at a monthly frequency as people change employers.

While our baseline analysis focuses on coworkers networks, we complement its statistics
with those of other network types, namely, networks of neighbors and relatives. We construct
networks of neighbors for all adult citizens in the country leveraging data from the National
Registry and the Supreme Court of Elections. The data consist of official records on the
residence of each citizen.!® Data on nationwide family networks is available from the National
Registry and makes it possible to reconstruct each person’s family tree.'® The data includes
individual identifiers that can be linked to SINPE. The same data source provides details on

individual demographics. Finally, we leverage data on corporate income tax returns from the

17Tt is worth noting that informal workers are a relatively small share of all workers in Costa Rica (27.4%),
which is significantly below the Latin American average of 53.1% (ILO, 2002).

18Records include each person’s district of residence, with 488 total districts, and also include the voting
center which is closest to the citizen’s residence, with 2,059 centers in total. We leverage the latter to get a
more precise notion of a person’s neighborhood. See Méndez and Van Patten (2025) for further details.

9We find that the average number of first-degree, second-degree, and third-degree relatives is 6 (median
5), 8 (median 7), and 14 (median 11), respectively.
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Ministry of Finance for the universe of formal firms. The data contains typical balance sheet
variables since SINPE’s inception, and includes details on each firm’s sector and location.

Summary statistics on each type of network are reported in Table G1.

7.2 From Model to Data

As described in the previous section, we obtained (i) transaction-level data including informa-
tion on the senders and receivers who took part in each transaction since the app’s inception,
and (ii) individual-level data on networks from official sources. Further, crucially, we can
link identifiers in (i) and (ii). We leverage this substantial data effort to construct measures
of networks (V) for each individual and to obtain individual-level measures of adoption at
the extensive and intensive margins. Figure G3 shows the diffusion path of the technology
for the median network.?

Our baseline analysis focuses on networks of coworkers—the network for which we can
more credibly identify network changes that are plausibly orthogonal to changes in app
usage. This will enable us to document evidence of selection (z) and cleanly identify 6,
which governs the strength of the strategic complementarities and will be crucial for the
policy analysis and the estimation of the optimal subsidy. We will also emphasize changes
in the intensive margin of adoption, which can be mapped to our model, as particularly
informative for teasing out the role of strategic complementarities relative to other potential

drivers, such as learning.

7.2.1 Evidence of Selection at Entry

Through the lens of our model, early adopters—who started using the technology even when
the network was small-—should be more intense users (with higher z). Consistent with
this notion, we document that early adopters have distinct characteristics as compared with
users who adopted later. For this exercise, and throughout the entire paper, we classify
an individual as an adopter starting from the time when she first used the app. First, as
shown in Figure 4, we find that early adopters have a higher average wage as compared with
individuals who adopted later (Panel (a)), and are on average more high-skill (Panel (b)).%!

Early adopters are also younger, on average, than later adopters, as shown in Figure G5.

20We classify networks (i.e., neighborhoods, families, firms) according to their level of adoption. In partic-
ular, we calculate the share of individuals within a network who had adopted SINPE by December 2021, the
last period available in our data set. We then compute percentiles of this share across networks to generate
a distribution.

21'We classify an occupation as high-skill if it requires education or training beyond a high-school diploma.
The dashed vertical line in each figure denotes the beginning of the pandemic, which just as in Figure G1
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Figure 4: Average Wage and Skill at the Time of Adoption
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Notes: Panel (a) shows the cross-sectional distribution of SINPE users’ monthly wages in USD. Panel (b) shows the cross-
sectional distribution of SINPE users’ skills. High skill users are those that are in an occupation that requires more than a high
school degree. Both panels show averages weighted by the number of transactions of each user. Both figures include a vertical
dashed line to mark the start of the COVID-19 pandemic (March 2020).

Second, we can more closely bring the model to the data by interpreting the flow benefit
of agents who adopt the technology as being proportional to how intensively they use SINPE.
Suppose SINPE users choose the intensity with which they use the app. Specifically, suppose

&; is the probability of a transaction per unit of time, maximizing the following expression:

1+p
S (xy, N;) = arg max zy, N & — 2 ,
& (e, Ny) gmax — Blae, Ne)& 1o

where p > 0 so that the problem is convex and [(z;, N;) > 0. The first order condition
describes the optimal intensity with which the technology is used: & (zy, Ny) = B(zy, Ny)'/P,
and we can choose the function 5(z;, V;) such that the indirect utility function gives the

specified flow benefit, i.e:

1 1+p
(0o + 0, Ni|z; = max —; B(xs, Np)& — 1t—|—p for all z; € [0,U] and N; € [0,1].  (29)

The solution is given by S(x;, Ny) = [(6o + 0,V) xt]#; combining this expression with the

first-order condition and taking logs with obtain:

1 1
In& = In |(6y + 6,,V, In ;.
Ilft 1+p Il[( 0+ t)]+1+p 1 Ty (30)

did not have a major impact on overall trends.
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Given the discreteness of the number of transactions in the data, £/ is interpreted as the mean
of a Poisson distribution; transactions each period are drawn from a Poisson probability dis-
tribution with mean &/ (i.e., T, ~ Poisson(&;)). Thus, if we were to remove the network x time
variation from the logarithm of the number of transactions, then they would proxy for In x;,
as through the lens of the model only the idiosyncratic variation would remain. The model
also predicts that users with a higher x would adopt the technology earlier. Thus, we can

obtain a relation between intensity of usage (T};) and the share of user i’s network who had

adopted the technology at the time when she first used the app (N, ):
IDTZ =7 + CNiTZLentry + )\? + US?

where n €{neighbors, coworkers, relatives} and T}, is defined as number of transactions of
user ¢ each month ¢. Our model predicts that ¢ < 0, as users who adopted the app (“entered”)
when the network was smaller should have a higher idiosyncratic taste for the app and use it
more intensively—note that the inclusion of the network-time fixed effect, A}, prevents this
relationship from being mechanical.

We estimate {“ to be —2.7 when defining a network as a neighborhood. This relationship
is shown in Column (1) of Table 1, and while suggestive, points to the presence of selection
at entry. The relation is also robust to defining networks using coworkers and relatives, as
shown in Columns (2) and (3) in Table 1. The relation also holds if, instead of the total
number of transactions, we consider the value of transactions as our dependent variable, as
reported in Table G3.

Table 1: Number of Transactions and Size of Network at Entry

Dependent variable: Number of Transactions (IHS)

(1) (2) (3)

Size of Coworkers’” Network at Entry — -1.300%**
(0.043)
Size of Neighbors’ Network at Entry -2.730%**
(0.025)
Size of Family Network at Entry -1.1817%**
(0.006)

Observations 16,138,736 34,409,818 14,700,288
Network x Time/Cohort FE Yes Yes Yes
Adjusted R-squared 0.304 0.234 0.199

Notes: The dependent variable in this estimation is the number of transactions each month for each user transformed using
the inverse hyperbolic sine function. Coefficients describe the effect of increasing the share of an individual’s network who had
adopted the app at the time when she used it for the first time. All regressions control for network size (in levels) and use data
from May 2015, when the technology launched, to December 2021. Standard errors, clustered by network, are in parenthesis.
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7.2.2 Estimating the Strength of the Strategic Complementarities

The core idea behind strategic complementarities is that usage benefits increase with the
size of a user’s network. Recall the expression in equation (30). Under this interpretation of
the model, the intensity with which the application is used, which is observable in the data
(e.g., number or value of transactions), is proportional in logs to the flow benefit of adopting
the application as described in the model. After taking the first order Taylor expansion of
In(0y + 6,,N;) around N* and plugging it into equation (30), we obtain:

1 0, (Ny — N*¥)
T, ~ —— (Il + 0 N*) + =2 Iy ). 31
BT Il 0N+ = B e (31
Moreover, taking first differences, it follows that:
AlnTt = ﬁANt + Vy, (32)

where § = #ler;,’%N*, 9= Z—g, and vy = ﬁpAln:ct. Further, if p ~ 0, then ¢ = % Thus,
throughout all the tables in this section, we can evaluate N* at its mean value to recover
¥ from each f3; these are our coefficients of interest since strategic complementarities in the
adoption of the technology exist if § >0 <= ¢ >0 <= 6, > 0 and 6, > 0. Note that
equation (32) is in differences, therefore, any individual or network characteristics which are
time invariant will cancel out.

With these expressions, one can first naively run an OLS specification. We do so in
Appendix G.4 and find a significant correlation between the intensity of app usage and
the share of individuals in the user’s network who have adopted it. This correlation remains
robust across various network definitions, usage intensity measures, and specifications. Then,
we show that the impact of network size on usage intensity persists even after employing a
leave-one-out instrument to address potential endogeneity concerns and measurement errors.
Additionally, this relationship is unaffected when accounting for selection through a balanced
panel of adopters. However, to quantify the model, one ultimately needs to take a stand on

the causal impact of changes in the number of adopters; we do so by focusing on mass layoffs.

Usage After a Mass Layoff (Intensive Margin of Adoption). This strategy focuses
on the network of coworkers and implements both (i) a mover design, where we follow workers
displaced during mass layoffs to examine the effect of network changes on the intensive and

extensive margins of adoption and (ii) an analysis of stayers, in which we instead focus on
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workers who remained at a firm after a mass layoff.?? The main hypothesis of the movers
exercise is that workers, who were displaced during a mass layoff and who ended up at firms
where a larger share of colleagues had SINPE (larger V), have more incentives to use the
app via the effect of strategic complementarities. Similarly, the idea behind the analysis of
stayers is that workers who remain at a firm that, for instance, laid off most of its SINPE-
using employees (smaller V), have now less incentives to use the app.

We first analyze the impact of a mass layoff on movers’ usage. To do so, we focus on
workers who were fired during a mass layoff and consider only displaced workers who had
already adopted and had used SINPE at least once by the time they were fired. We then
examine how the intensity with which they use the app changes depending on the change in
the share of coworkers who had SINPE at their old and new firm. As explained before, it is
possible to derive the relationship in equation (58) from our theoretical model, which speaks

to the technology’s usage intensity. Thus, we consider:

AInT, =a + CANfOWOTkerS + vAlnwage; + Y Alnsize; + ¢ date hired;+

wACovid; + 0\;. + v1n Z Ty +v Z (In Tt new firm — 1N T, old firm) + €5 (33)
t=0 t=0

where AlnT; refers to the change in monthly intensity with which individual ¢ used SINPE
within 6 months after arriving at her new firm compared with 6 months before being fired;
ANgeworkers s the change between the share of coworkers who had adopted at the old and
the new employer; Alnwage; corresponds with the change in the average wage (in logs)
across 6 months before the layoff and after the rehiring; Alnsize; is the change in the
number of workers at each firm; date hired; is a time fixed effect corresponding with the
month in which individual ¢ was hired by the new firm; ACovid; controls for the change
in the cumulative COVID-19 cases (transformed using the inverse hyperbolic sine function)
in the individual’s neighborhood across the 6 months before the layoff and after the rehir-
ing; \;. controls for cohort (i.e., the date when individual ¢ adopted SINPE); In) "7 T,
is the sum of all historical transactions made by agent ¢ since she adopted the app, and

0 (I T, new fiem — IN Ty o1d fiem) 18 the difference in the (log) historical transactions made
by workers at the new firm and the old firm up until the move occurred, which aims to control
for factors—other than strategic complementarities—which might facilitate adoption at the

new vs. the old firm.?3

2270 define a mass layoff, we follow Davis and Von Wachter (2011) and identify establishments with at least
50 workers that contracted their monthly employment by at least 30% and had a stable workforce before this
episode and did not recover in the following 12 months. Given we also analyze stayers, we implement a few
additional refinements. Details are provided in Appendix G.5.1.

ZResults are robust to also including a dyadic interaction controlling for industry before and after the
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This is our preferred specification for several reasons. First, the results are likely not
driven by learning about the app since (i) workers had already adopted the app when they
were fired—and we define “adoption” as making at least one transaction—so they were at
least aware of the app’s existence and had used it before; (ii) we control for tenure in the
app (i.e., the cohort when the user adopted) and for the historical number of transactions in
the app, which as shown before correlate with observables like age, skill, and wage. These
variables aid in controlling for characteristics that are particularly relevant for intensity of
usage and are also useful to addressing learning to better use the app after adopting. Second,
of course, the choice of the new firm after a mass layoff is not exogenous, but this does not
pose a measurement problem as long as sorting is not (both): (i) stronger after a mass
layoff—mote that there is no reason why this might be the case, especially as results hold
even when we focus on job-to-job transitions, where workers had little time to find a new job
after being fired exogenously—and (ii) not controlled for by the cohort of the mover, which
proxies for her idiosyncratic characteristics, and difference in the historical transactions at
the new vs. the old firm. The latter control, in particular, helps us rule out stories where,
for instance, workers select into firms where people use the app more intensively for reasons

other than strategic complementarities (like demographics or the internet speed at the firm).

Table 2: Intensity of Usage and Changes in Coworkers’ Network After a Mass Layoff
Dependent Variable: A Number of transactions (IHS)

(a) Movers (b) Stayers

M @) G) @ 6 ©
ANgoworkers 2.646%%*  1.406%**  1.283%FFF | 3,284 (.952%*  (0.971**
(0.203)  (0.268)  (0.294) (0.237)  (0.443) (0.435)

Alnwage; 0.383*#*  (0.385%** 0.203**  0.132
(0.070)  (0.077) (0.087)  (0.103)

ACovid; 0.168%*  0.167*** -0.010  -0.012
(0.027)  (0.032) (0.025)  (0.024)

Observations 917 917 917 2,236 2,236 2,236

Time FE No Yes Yes No Yes Yes

Cohort FE/Historical T No No Yes No No Yes
Adjusted R-squared 0.153 0.244 0.262 0.093 0.122 0.184

Notes: The unit of observation is the individual. We run regressions using data on mass layoffs which occurred between May
2015, when the technology was introduced, until December 2021. While time and cohort fixed-effects’ inclusion varies across
columns, all other independent variables in equation (33) are present across columns. Standard errors are in parentheses.

Panel (a) of Table 2 displays our results using the number of transactions per user as our

move.
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dependent variable. Changes in the intensity of usage depend positively and significantly on
the change in the share of adopters at the old and new firm. Panel (al) of Figure 5 displays
the marginal effect of these network changes following the specification described by Column
(2) of Table 2. As this panel shows, not only is the relationship between usage and network
changes positive, but also whenever a worker moves to a firm with a lower adoption rate, her
usage decreases (i.e., the change on the vertical axis is negative), a relationship that would
be hard to reconcile with a pure learning story.?*

Column (3) controls for cohort, i.e., date of adoption, which aims to mitigate any effect
of more experienced users behaving differently than beginners. Column (3) also controls for
the total historical transactions made, which in a similar spirit as cohort, intends to mitigate
any effect resulting from learning how to use the app from others. Interestingly, as compared
with Column (3), adding these controls does not change the coefficient of interest almost at
all. This result aligns with the following intuition: at the intensive margin—once users have
already adopted and used the app—a learning story is less plausible, as reflected by (¢ not
changing after controlling for cohort and historical usage.

The analysis can be taken to an even more detailed level if, instead of considering all
transactions in the left-hand-side variable, we focus only on those which had a coworker as
a counterpart. This subsample allows us to better identify changes in usage intensity which
are a direct consequence of the arguably exogenous changes in the network of coworkers.
Reassuringly, results are remarkably similar to those using all transactions, as shown in
Panel (a2) of Figure 5.

A similar analysis can be conducted based on stayers. Namely, we focus on workers who
remain at a firm after it experienced a mass layoff. Their change in N will therefore depend
on how the composition of SINPE adopters changed after the mass layoff. We then consider
a regression similar to equation (33), except for the last regressor which would be zero in this
case.?”” Results based on stayers are reported in Panel (b) of Table 2 and Panel of Figure 5.
Remarkably, although the movers design is based on a very different sample than the analysis
based on stayers, the estimated coefficients in our preferred specifications, in columns (3) and

(6) of Table 2, are statistically equal.

Adoption After a Mass Layoff. Lastly, we analyze changes in the extensive margin of

adoption. For movers, we consider the change in the probability of adoption for displaced

24The marginal effect considering the value of transactions as dependent variable, as opposed to the number
of transactions, is reported in Figure G7. We also report the distribution of network changes in Figure G8
and the absence of pretrends in Figure G9.

25 An additional control equal to the change in the average wage at the workers’ firm delivers statistically
equal results, both for the intensive and extensive margin analyses.
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Figure 5: Marginal Effect of Network Changes on Usage Intensity
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Notes: Panel (al) plots the marginal effect of ANFoworkers in the specification described by Column (3) of Table 2, while
Panel (b1) plots the marginal effect of ANFOworkers in the specification described by Column (6) of Table 2. Bars denote 95%
confidence intervals. The dependent variable in this estimation is the number of transactions (transformed using the inverse
hyperbolic sine function) on each period for each user. Panels (a2) and (b2) are similar, but differ as the dependent variable
in these estimations is the number of transactions which have a coworker as a counterpart (transformed using the inverse
hyperbolic sine function) on each period for each user. Results are robust to winsorizing the top and bottom 5th percentiles of
the distribution of network changes.
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workers who had not adopted the app by the time they were rehired, and how it depends on
the change in the share of coworkers who had SINPE at their old and new firm. We consider:

Adopt; =a + CANZ-COWON“”S + yAlnwage; + PYAlnsize; + ¢ date hired;+

WACOUidi +v Z (lIl Tt, new firm — In Tt, old ﬁrm) + €y (34)
t=0

where Adopt; equals one if individual ¢ adopted SINPE within 6 months after arriving at her
new firm, and zero otherwise. Other variables are defined in the same way as in equation (33).
For stayers, we instead consider the probability of adoption for workers who were not fired by
a firm which underwent a mass layoff and how it depends on the change in the composition
of workers who had SINPE, before and after the mass layoff took place. We then use a
regression similar to equation (34), except for the last regressor which would be zero.
Panels (al) and (b1) of Figure 6 estimate equation (34) using a logit model. The marginal
effects of changes in network adoption are reported in brackets. The analysis of movers in
panel (al) consistently finds that workers who, after a mass layoff, were hired by firms where
the rate of SINPE adoption was higher than their previous employer’s are more likely to adopt
SINPE than their counterparts who moved to firms where the change in their coworkers’ rate
of adoption was smaller. Reassuringly, panel (bl) also finds that workers who experienced
an increase in the share of adopters among their peers were more likely to adopt SINPE
themselves. The marginal effect of ANgowerkers under the specification described by Column
(3) in each table, is shown in panels (a2) and (b2). These marginal effects are monotonous
and, as expected, are present only when the change in the share of adopters is positive,

regardless of the subsample considered.
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Figure 6: Adoption Probability and Changes in Coworkers’ Network After a Mass Layoff
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(1) (2) (3) =1
ANZ-C"“’OT’“”S 11.249%F*  6.489%**  §.418*** © |
(0.172) (0.356) (0.357)
[0.716] [0.442] [0.437] g
Alnwage; -0.104  -0.098 g7
(0.089)  (0.089) E
ACovid; 0.037*
(0.020) 7
Observations 24,329 23,005 23,005 o
Time/Cohort FE No Yes Yes 5 5 __‘4 ) ) 7 0 5 3
Pseudo R2 0.330 0.356 0.357 Change Share of Adopters (N)
(b1) Changes in Adoption Probability (b2) Marginal Effect of Network Changes

Notes: Panels (al) and (bl): The unit of observation is the individual. We run regressions using data on mass layoffs that
occurred between May 2015, when the technology was introduced, and December 2021. Standard errors are in parentheses.
Marginal effects for the main variable of interest are reported in brackets. Panels (a2) and (b2): The figures plot the marginal
effect of ANgoworkers in the specification described by column (3) of panels (al) and (bl), respectively, in this figure. Vertical
bars denote 95% confidence intervals.

8 Quantitative Performance and Optimal Subsidy

In this section, we calibrate the version of the model that incorporates learning, described
in Section 6, and evaluate its performance relative to SINPE data. The model with only
strategic complementarities assumes that all individuals are informed about the technology
at all times. However, according to the 2017 Survey of Payment Methods conducted by the
Central Bank of Costa Rica, only about 4% of adults reported knowing about SINPE Mévil
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more than two years after its launch. The model that incorporates learning helps align the
model with this fact and, as a result, with the smooth and relatively flat path of N(¢) during
the first few years after launch shown in Figure 7. In what follows, we describe our calibration

procedure in detail.

Calibration. We interpret the flow benefit of agents who adopt the technology as being
proportional to how many transactions they conduct, and assuming a convex adjustment
cost (i.e., p > 0). U can be normalized without loss of generality (we use the normalization
U = 1), so the problem features seven independent parameters: v,r,0,,6y, 0, p, and c¢. The
model with learning has an additional parameter, 3y, and an initial condition for the informed
population, 7(0).

The parameters v, r, 5y and are calibrated externally. We set v to 0.0278 to match the
rate at which agents stop using SINPE: namely, the average fraction of agents in 2019-2021
who had adopted SINPE but did not conduct a single transaction in the app within a year.
We use the last three years of the data, when the adoption rate is higher, to focus on periods
closer to a stationary equilibrium. We set the discount factor r to be consistent with a 5
percent annual interest rate. This value is a lower bound for , which can admit higher values
if we assume agents expect new technologies to arrive in the future and replace SINPE. The
values of v and r imply p = r + v = 0.0778. Lastly, we calibrate 5, and I(0) jointly to
match two observed moments of the information diffusion process.? We use the expression
for the diffusion path (see Proposition 11) and set I(¢;) = 0.0409 at t; = 31 months (based
on the 2017 Survey of Payment Methods) and I(t2) = 0.9617 at to = 117 months (based on
a follow-up survey conducted by the Central Bank in 2025). This yields £y ~ 1.0717 and
1(0) ~ 0.00287, implying that about 0.29% of workers were informed about SINPE Mévil at
the time of its launch.

The parameters 6,6y, 0, p are calibrated using simulated methods of moments (SMM).
Intuitively, we aim to choose parameters that make the model consistent with the distribution
of transactions in the data and the mass layoff exercise. To achieve this, in the data, we
focus on workers at firms active from 2019 to 2021 with more than 5 employees. We take
advantage of having closed form solutions for the steady state. Thus, we concentrate on firms
close to a stationary equilibrium, specifically those whose N (fraction of employees with the
app) changed by less than 0.1 percentage points in 2021. We then compute moments from
the empirical distribution of transactions over the years 2020-2021 and simulate the model,

replicating the same characteristics as our empirical sample. In addition, we simulate a

26Diffusion models typically impose a small seed value for the unobserved initial condition. Observing
two moments of the information diffusion path allows us to identify it jointly with the transmission rate.
Standard SIR applications assume I(0) = eN for small ¢ (e.g., Acemoglu et al., 2021; Alvarez et al., 2021).
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sample of firms that replicates the characteristics of those subject to a mass layoff. We do
this to run the same estimation, presented in Section 7.2.2, in the simulated data to obtain
information on the parameters governing the strength of the strategic complementarities. We
then choose the parameters that minimize the distance between the moments in the data and

the model. We provide more details of our strategy below.

Simulation. We begin by simulating the model for a monthly panel of agents. Our sim-
ulation takes as given the values of v, r, and [, since they are calibrated externally, and
Nss = 0.90, which is obtained from our sample of firms close to a stationary equilibrium.
Initial conditions z(0) are drawn from the stationary distribution of adopters. To find this

distribution, we first find Z,s using the following equation:

tanh(y7s,) )} ‘

7-7?55

Nyo=(1-2%) [1—:1:58 (1—

Then, given z,, we find the distribution of adopters using the stationary distribution of

non-adopters:

m(z) = (1- %) (1 — %) where v = V2v/0
using that Ny, = I, — M, and I, = (1 — ﬁ) We simulate a panel of 5,000 individuals.?” In
the simulation, agents die at rate v and they become inactive in the application just as in the
data. The process of x follows a Brownian motion, independent across agents, with variance
per unit of time o, no drift, and reflecting barriers at x = 0 and x = 1. Since z is unobserved
and what is observed are transactions, as before, we interpret the flow benefit of agents who
adopt the technology as being proportional to how intensively they use SINPE. Thus, we
compute: & = [0p(1 + ﬂNss)xt]ﬁ, where ¢ = g—z, to find the number of transactions T, by

drawing them from a Poisson probability distribution T; ~ Poisson(&;).

Mass Layoff. We also simulate a panel of workers at firms with the same characteristics
as those experiencing mass layoffs in the data. Specifically, as presented in Table G12, we
simulate a sample of 292 firms with 94 employees each. We focus on workers who remain at a
firm after it has experienced a mass layoff (i.e., stayers).?® We then examine how the intensity
with which they use the app changes depending on the change in the share of coworkers who

had SINPE after a mass layoff. The change in N depends on how the composition of adopters

27Qur estimates are not sensitive to simulating a larger sample of users.
28Table 2 shows that the estimated impact of a mass layoff on usage is statistically equal for movers and
stayers.
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changes after the mass layoff, which involves randomly choosing and removing a fraction of
workers from each firm undergoing a mass layoff. We choose the magnitude of these mass
layoffs to match the average size of these events in the data (i.e., 57%). We then run the same
regression that is implemented in Table 2. First, we calculate the number of transactions
before and after the mass layoff event. Then, we regress the change in monthly transactions
within six months of the mass layoff event on the change in the share of coworkers who had
adopted the app before and after the event. The estimated coefficient is a moment that we

target in our calibration

Calibrated Moments. We target the following five moments: the mean number of trans-
actions, the median number of transactions, the absolute value of changes in transactions,
the coefficient of the mass layoffs regression, and the autocorrelation of the number of trans-
actions. As done throughout the paper, all the targeted data moments are calculated after
controlling for COVID-19 cases. Parameters 0,,, 6y, 0, and p are chosen to minimize the sum
of the norms of the percent deviations of simulated moments from target moments.? Table 3

reports the empirical and simulated moments.>°

Table 3: Moments: Distribution of Transactions

Parameter Value Std. Dev. | Moment Data  Model
o 0.032 0.002 Mean Number of Transactions 6.88 6.84
0o 26.32 4.726 Median Number of Transactions 6.08 6.64
D 0.0059 0.0009 Absolute Value Changes in Transactions  3.48 2.76
9= ‘9—’; 5.722 0.343 Coefficient Mass Layoffs Regression 0.97 0.96
Autocorrelation of Transactions 0.97 0.95

Intuitively, the mean and median number of transactions provide information about 6
and p, as shown by equation (30). The dispersion in the changes of transactions and the
autocorrelation of transaction provide relevant information to pin down o; a lower variance
decreases the absolute value of the changes in transactions but increases the autocorrelation
coefficient. Lastly, equation (32) shows that the coefficient of the mass layoffs regression

informs the estimation of 6,.3! Targeting this moment allows us to leverage the rich vari-

29This is, min Zf w(i)%&%ﬁta(m, where Model(i) is a simulated i-th moment and Data(i) is a target
value of i-th moment. We assign half of the weight to each of the mean and median of transactions since they
provide similar information for the calibration. We assign twice as much weight to the coefficient of the mass
layoff regression, as this moment provides information about the strength of the strategic complementarities.

30We simulate the model 200 times and use the average values of the moments from the simulated data.
In the model and the data, we calculate the autocorrelation of the average transactions over two years to
minimize the impact of measurement error in the autocorrelation coefficient. The standard deviation of the
parameters is obtained from the the SMM variance-covariance matrix, which is obtained from calculating the
derivative of the criterion function with respect to each parameter.

31The learning model in Appendix E cannot capture the patterns observed after mass layoffs, as it features
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ation across networks to inform the model estimation. Importantly, by running the same
regression in both the data and the model, we do not rely on approximating the relationship
between the change in transactions and the change in the share of users who have adopted
the technology around the stationary equilibrium to obtain information about 14, as done in
equation (32). Overall, Table 3 shows that the model is quantitatively consistent with the
empirical distribution of transactions.??

Cost of Adopting. Lastly, the adoption cost, ¢, can be obtained from the solution of
the stationary problem for adoption, given a value of Z,, and the parameters 6,,6y,0. In

particular, we use the following equation:*?

_ _ _ _ B 1 6775655 + e—ni’ss B ~ 3 )
C =05 |Tss + A1 + Age™ "> — (Em) (1 +nAe’ — 771426777%5)

where n = /2p/o, A = %%, Ay = %(e(};fzz,) and 0,5 = WT”NSS. The calibrated
parameters imply an adoption cost of ¢ = 10.54 - 6y, which rationalizes the observed steady-
state adoption level N,,. Importantly, our procedure does not assume a unique interior
steady state—only that the economy is observed at a steady state. The calibration relies
entirely on aggregation and the statistical properties of the unobservable state variable x and
transactions, without using agents’ optimality. As a result, parameters are estimated via the
method of moments, and the adoption cost ¢ is then computed using the firm’s first-order

condition to ensure consistency with the steady state.

Results. Using the estimated parameters, we simulate the dynamic model to obtain the
adoption path predicted by the model. Panel (a) of Figure 7 compares the path of adoption in
the model and in the data. The solid red line indicates the diffusion of the technology in the
median firm and the dashed lines represent the 10* and 90" percentiles after controlling for
COVID-19 cases.?* The figure shows that both the speed and the level of adoption generated
by the model are consistent with those in the data. Panel (b) shows the path of I(t), N(t)
and Z(t). The path of I(¢) shows that most people are informed about the technology within
the first 7 years; in the stationary distribution, approximately 97.4% (i.e., Iz = 1— é) of the
population knows about the application and 89% of the workers the median firm adopt the

random diffusion of the technology. Consequently, after adoption, an agent’s flow benefit does not depend
on the network size N (i.e., 6, = 0).

32 A sensitivity analysis of the relevant parameters can be found in Appendix H.

33All details on the derivation of this equation can be found in Appendix A.1.

34We adjust the adoption path in the data to control for the pandemic. To do so, we estimate the impact
of COVID-19 cases on the number of new users and subtract the predicted number of pandemic-driven new
users from the cumulative number of users.
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application as shown by the path of N(¢). Importantly, the declining path of Z(¢) indicates
that, consistent with our empirical evidence, the model features selection: agents that benefit
the most from the technology adopt first. This contrasts with the model that features only

learning, which shows no selection in the adoption of the technology.®

Figure 7: Path of Adopters (Short-Run and Long-Run)
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(a) Model vs Data (b) Long-Run Path

(c) Comparative Statics: Ngs (d) Comparative Statics: Zss

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the patterns of diffusion
of the technology in the median firm, where the percentile is calculated in the last period of the sample using the share of
individuals that had adopted the technology. The dashed red lines show the 10*" and 90t percentiles. Panel (b) shows the
share of informed agents, I(t), the share of adopters, N(¢), and the levels of Z(t) predicted by the model under our baseline
calibration. Panel (c) and (d) show how Nss and Zss change with ¥ and o, keeping the rest of the parameters constant. The
black diamonds indicate the levels of ¥ and o in our baseline calibration.

Panels (c¢) and (d) of Figure 7 display the values of Ny, and Zg, in the stationary equi-

librium as we vary 9 and o, while holding others constant. These panels illustrate the

35 Appendix H.3 presents a version of the model without strategic complementarities and only learning
(i.e., ¥ = 0). In this case, the path of Z(t) is completely flat. Figure H7 shows the paths of N(t) and Z(t) for
different speeds of information diffusion; namely, different values of 5y. It shows that selection occurs in the
model even when the speed of information diffusion is very high.
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comparative statics of the stationary equilibrium derived in Section 3.4. Panel (c) shows
how the stationary level of adoption changes with ¥ and o (a black diamond denotes Ng’s
level in the baseline calibration). As 1 increases, so does the strength of the strategic com-
plementarities, and not surprisingly, N, increases as ¢ rises. The effect of o is more subtle
and results from two opposing forces. On the one hand, higher o decreases N, since agents
have a higher option value of waiting to adopt. On the other hand, higher ¢ increases N,
since it implies a smaller density of non-adopters below Z,s. In our calibration the latter
effect dominates and Ny, increases with o. Panel (d) displays a similar exercise for Tz It
shows that strategic complementarities ¥ play an important role in decreasing the adoption

threshold. Moreover, given 9, a higher ¢ increases T

Variation Across Networks. The model is consistent with both high and low adoption
networks of firms, each implying a different path of adopters in equilibrium. Specifically, we
calibrate the model by targeting moments from individuals at firms whose level of adoption
is either above the median (high adoption) or below the median (low adoption).*® We target
the same data moments computed for different samples of workers, specifically those working
at firms whose average level of adoption is either above the median, N"9" = (.95, or below
the median, N'°“ = (.73, and we assume the same coefficient for the mass layoffs regressions
in both calibrations. We estimate a higher level of strategic complementarities (i.e., higher )
in networks with high adoption and a higher convexity in the cost of conducting transactions
in low adoption networks (i.e., higher p). Panel (a) of Figure 8 shows the path of adopters
in the two calibrated networks (high and low adoption) relative to the data, indicating that
these calibrated versions of the model are consistent with the 10* and 90" percentiles of
adoption in the data. Panel (b) show the path of Z(¢), which indicates the strength of the
strategic complementarities in each of the calibrated networks. In the high adoption network,
96% of the population adopts the application. In the low adoption network, only 73% of the

population adopts in the stationary equilibrium.

Optimal Subsidy. Panel (a) of Figure 9 shows the optimal adoption path in the model
with complementarities (blue line) relative to the high-adoption equilibrium (black line).
During the first three years after the launch of the technology, the optimal level of adoption
is similar to that of the equilibrium without subsidy. Afterward, the optimal path of adopters
from the planning problem is higher. In fact, by the beginning of 2020, it is equal to the total
number of informed agents in the economy—over 12 percentage points higher than the levels

of adoption observed in the data—and by the end of 2021, it is over 15 percentage points

36The details of the calibration can be found in Appendix H.2.
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Figure 8: Variation Across Networks: Path of Adopters
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(a) Model vs Data (b) Path of Z(t)

Notes: Panel (a) compares the path of adopters in the model and in the data. The solid red line shows the diffusion patterns
of the technology in the median firm, and the solid black line shows the diffusion patterns in the benchmark calibration of the
model. The dashed red lines indicate the 10t" and 90" percentiles of adoption in the data. The solid magenta line shows
the path of adopters in the model calibrated for high adoption, and the solid blue line shows the path of adopters in the low
adoption calibration. Panel (d) shows the levels of Z(t) under each of the calibrations, respectively.

higher. Panel (b) shows the path of the optimal subsidy.?” As the share of adopters increases,
so does the externality. Thus, the optimal subsidy, which is the same across agents, increases

over time. To see why, notice the optimal flow subsidy in equation (28) can be written as
0,Z(t) = 0,N(t) x E(xz|adopted),

where the expectation over x is taken over the set of agents that have adopted the technology
(see Theorem 3). The first term 6, N captures the size of the adoption externality, i.e., the
additional benefits for agents that adopt the technology. Thus, the subsidy increases as
more agents adopt. Conversely, E(z|adopted) decreases as more agents adopt, since the
marginal adopter has lower idiosyncratic benefits from adopting the technology. Intuitively,
the planner internalizes that subsidizing agents with low x also benefits the rest of the agents,
even if the subsidy to incentivize these agents to adopt is large. The first component of the
optimal subsidy dominates and eventually pushes the economy to universal adoption. The
optimal subsidy contrasts with that of a pure learning model, which is constrained efficient
and where the optimal subsidy to adopt the technology is zero. Importantly, the planner is
also constrained by the share of people who are informed; otherwise, while the subsidy would

still be increasing and the same across agents, there would be a “jump” in the subsidy level

3TFigure 9 shows the subsidy 6,,Z(t) as a ratio of the net flow benefits (i.e., (6p + 0, N(t))E(z|adopted)).
In the invariant distribution, the subsidy-to-benefit ratio is approximately 0.84.
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Figure 9: Planning Problem: Solution and Optimal Subsidy
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Notes: Panel (a) shows the share of informed agents, I(t), the share of adopters, N(t), and the optimal levels of adoption,
N(t) (optimal), according to the solution of the planning problem. Panel (b) shows the path of the ratio between the optimal
subsidy 6, Z(t) and the flow benefit of the average adopter, Z(t)(6o + 0, N(t)). Panel (c) shows the share of informed agents,
I(t), the share of adopters, N(¢), and the optimal levels of adoption, N(t) (optimal), according to the solution of the planning
problem for a high adoption cost and 70% of the population informed 7 months after the launch of the technology. Panel (b)
shows the same variables for a lower adoption cost and 70% of the population informed 7 months after the initial launch. The
initial distribution in both panels is mqo(t) = 1/U.

as soon as the application is launched, as depicted in panel (b) of Figure 3.3

In Appendix H.2 we estimate the model using variation across different networks. Our
findings indicate that the model aligns with both high and low adoption networks of firms,
each implying different paths of adopters in equilibrium and different optimal adoption paths
in the planning problem. Consistent with our benchmark calibration, all versions of the model
show that the optimal subsidy pushes the economy toward universal adoption. Figure H6

shows that only for lower levels of ¥/ does the planner prescribe lower adoption levels.

38Figure H8 shows the optimal adoption paths and the respective subsidy-to-benefit ratios for different
speeds of information diffusion.
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Multiplicity. Our model can be used to study economies with higher adoption costs fea-
turing multiple equilibria. We consider an economy with higher adoption cost ¢ and higher
fraction of the population informed about the technology at launch. This example is mo-
tivated by a recent experience in El Salvador, where 70% of the population knew about a
payment app introduced by the government (i.e., Chivo Wallet) 7 months after its initial
launch.® Panel (c) shows the possible paths of adopters N(t) for this economy. It shows
that, when the adoption cost is larger (in this case 15% higher than in Costa Rica), the
low-adoption equilibrium where nobody adopts the technology is not ruled out; for the same
initial conditions, there is an equilibrium with high adoption and one with no adoption.
Panel (d) shows the same paths for a lower adoption cost. Our model allows for the study
and quantification of policies that eliminate the no-adoption equilibrium even if the optimal
subsidy is not implemented. In this case, a large enough permanent subsidy can lower the
adoption cost, solve the coordination failure, and send the economy to the high adoption

equilibrium, i.e., from Panel (c) to (d).*

9 Conclusion

Understanding the adoption process of a technology and the transition from low to high
adoption is challenging, especially in the presence of strategic complementarities. This paper
develops a new dynamic model of technology adoption that allows us to model this transition.
The model provides a framework to generate gradual adoption through a novel mechanism—
waiting for others to adopt—and allows us to derive predictions that can be tested empirically.
We solve for the social planner’s problem. The planner in our setup controls the entire
distribution of adopters across time. The presence of strategic complementarities enriches
the problem and allows us to link our results to the “big push” literature, as they imply that
small subsidies can lead to large changes in adoption given the multiplicity of equilibria. In
our framework, the optimal subsidy increases over time but it is flat across people, thus, easily
implementable. The methodology we develop can be useful for a wide set of multidimensional
dynamic problems, and can be applied to the study of any technology that features strategic
complementarities, learning, or both.

Our application analyzes new electronic methods of payment, which are particularly rel-

evant today and are undergoing a digital transformation. This revolution has been echoed

39The app allows users to digitally trade both bitcoin and dollars.

40The Salvadorean government did in fact implement a similar subsidy. As an incentive to adopt, citizens
who downloaded Chivo Wallet received a $30 bitcoin bonus from the government. Our model suggests that
the subsidy was not large enough to rule-out the no-adoption equilibrium given the low levels of adoption of
Chivo Wallet reported by Alvarez, Argente and Van Patten (2022).
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by a growing interest from monetary authorities to promote and develop digital payment
platforms, both in developed and developing countries. Using individual- and transaction-
level data on SINPE, a national electronic payment system adopted by a large fraction of
the adult population in Costa Rica, along with extensive data on the networks of each user,
we document that strategic complementarities play an important role in the adoption of this
technology. SINPE also provides a rich environment to calibrate the model, which allows
us to estimate the optimal time-varying adoption subsidy and the degree of selection into
adoption across time. These results have implications for the launch and implementation of

payment technologies with similar features such as CBDCs.
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